Автор работы: Пользователь скрыл имя, 30 Ноября 2013 в 10:19, реферат
При тепловой обработке мяса и мясопродуктов происходят, размягчение продукта, изменения формы, объема, массы, цвета, пищевой ценности, структурно-механических характеристик, а также формирование вкуса и аромата. Характер происходящих изменений зависит в основном от температуры и продолжительности нагрева.
При тепловой обработке мяса и мясопродуктов происходят, размягчение продукта, изменения формы, объема, массы, цвета, пищевой ценности, структурно-механических характеристик, а также формирование вкуса и аромата. Характер происходящих изменений зависит в основном от температуры и продолжительности нагрева.
Изменение мышечных белков. Тепловая денатурация мышечных белков начинается при 30—35°С. При 65°С денатурирует около 90% всех мышечных белков, но даже при 100°С часть их остается растворимыми.
Наиболее лабилен основной мышечный белок — миозин. При температуре немногим выше 40°С он практически полностью денатурирует.
Миоглобин, придающий сырому мясу красный цвет, при денатурации подвергается деструкции. Денатурация миоглоби-на сопровождается окислением ионов двухвалентного железа, входящего в активную группу молекулы этого белка (гем), до трехвалентного. При этом исчезает красная окраска мяса, образуется гемин серо-коричневого цвета. Полная денатурация миоглобина наступает при 80°С. Поэтому по изменению окраски мяса можно судить о степени его прогрева.
Так, при температуре 60°С окраска говядины ярко-красная, свыше 60—70°С — розовая, при 70—80°С и выше — серовато-коричневая, свойственная мясу, доведенному до кулинарной готовности.
Причины аномальной (розоватой) окраски мяса, подвергнутого достаточной тепловой обработке, могут быть следующими: использование мяса сомнительной свежести, в котором накапливается аммиак; свежие мясные продукты в нарушение требований технологии разогреты или сварены в хранившемся уже бульоне; повышенное содержание нитратов в мясе.
В результате взаимодействия тела с аммиаком или нитратами образуется вещество (гемохромоген, нитрозогемохромоген), имеющее розовато-красную окраску.
Ген, в состав которого входит трехвалентное железо, проявляет себя как индикатор: он имеет серовато-коричневую окраску в нейтральной и слабокислой среде и красную — в щелочной. Свежесваренный бульон имеет слабокислую среду. Порча бульона может протекать по-разному. При прокисании бульона (сдвиг рН в кислую сторону) порчу легко обнаружить, а при сдвиге рН в щелочную сторону (действие гнилостной микрофлоры) изменения менее заметны. Вареное мясо, разогретое в таком бульоне, может приобрести розовую окраску.
Сохранение розовой окраски мяса, подвергнутого тепловой обработке, в любом случае говорит о санитарном неблагополучии. Исключение составляет ростбиф, который готовят с разной степенью прожаренности.
Белки саркоплазмы, представляющие собой концентрированный золь, в результате денатурации и последующего свертывания образуют сплошной гель. Белки миофибрилл (уже находящиеся в состоянии геля) при нагревании уплотняются с выделением влаги вместе с растворенными в ней веществами. Диаметр мышечных волокон при варке уменьшается на 36—42%. Чем выше температура нагрева, тем интенсивнее уплотнение волокон, больше потери массы и растворимых веществ.
При жарке мясо прогревается только до 80—85°С в центре изделий, поэтому мышечные волокна уплотняются меньше, чем при варке (при варке температура 95°С). Для доведения мяса до готовности необходимо дальнейшее нагревание денатурированных мышечных белков. В этих условиях происходят более глубокие изменения их — деструкция с образованием таких летучих веществ, как сероводород, фосфористый водород, аммиак, углекислый газ и др.
При воздействии высокой температуры, превышающей максимум выносливости микроорганизмов, происходит их отмирание. Бактерии, не обладающие способностью образовывать споры, погибают при нагревании во влажной среде до 60-70 °С через 15-30 мин, до 80-100 °С — через несколько секунд или минут. У спор бактерий термоустойчивость значительно выше.
Они способны выдерживать 100 °С в течение 1-6 ч, при температуре 120-130 °С споры бактерий во влажной среде погибают через 20-30 мин. Споры плесеней менее термостойки.
При пастеризации пищевой продукт подвергается минимальному температурному воздействию. В зависимости от температурного режима различают низкую и высокую пастеризацию.
Низкая пастеризация проводится при температуре, не превышающей 65-80 °С, не менее 20 мин для большей гарантии безопасности продукта.
Высокая пастеризация представляет собой кратковременное (не более 1 мин) воздействие на пастеризуемый продукт температуры выше 90 °С, которая приводит к гибели патогенной неспороносной микрофлоры и в то же время не влечет за собой существенных изменений природных свойств пастеризуемых продуктов. Пастеризованные продукты не могут храниться без холода.
Стерилизация предусматривает освобождение продукта от всех форм микроорганизмов, в том числе и спор. Стерилизация баночных консервов проводится в специальных устройствах — автоклавах (под давлением пара) при температуре 110-125°С в течение 20-60 мин. Стерилизация обеспечивает возможность длительного хранения консервов.
Изменение соединительно-тканных белков. Основные белки соединительной ткани — коллаген и эластин в процессе тепловой обработки ведут себя по-разному. Эластин устойчив к нагреву.
Коллаген при нагревании в присутствии воды, содержащейся в мясе, претерпевает следующие изменения: при температуре 50—55°С коллагеновые волокна набухают, поглощая большое количество воды; при 58—62°С резко сокращается длина коллагеновых волокон, увеличивается их диаметр и они становятся стекловидными; процесс этот называется денатурацией или свариванием коллагена; при дальнейшем нагреве происходит деструкция коллагеновых волокон — распад их на отдельные полипептидные цепочки; коллаген превращается в растворимый глютин.
Переход коллагена в глютин — основная причина размягчения мяса. По достижении кулинарной готовности в глютин переходит 20—45% коллагена.
Скорость перехода коллагена в глютин и, следовательно, скорость достижения кулинарной готовности зависят от ряда факторов: вида и возраста животного; особенностей морфологического строения мышцы; температуры; реакции среды и т. д. Те части мяса, в которых коллаген очень устойчив, непригодны для жарки.
При повышении температуры распад коллагена ускоряется. Особенно быстро он происходит при температуре выше 100°С (в условиях автоклавирования).
Скорость тепловой денатурации зависит от температуры, влажности, способа нагрева и других факторов. Денатурация тормозится при добавлении определенных веществ, таких, как пирофосфат, многоатомные спирты, сахара и Р-актин, хотя механизмы торможения различны. Скорость денатурации АТФазы увеличивается при расщеплении мышечного протеина в результате уменьшения размера, плотности и симметрии молекул. Скорость денатурации белков зависит и от некоторых других факторов. Например, денатурация фибриногена мочевиной ускоряется при увеличении концентрации мочевины и при понижении рН ниже 7, однако в интервале рН 7,0...8,6 скорость реакции почти постоянна. Присутствие тяжелой воды стабилизирует нативную структуру ферментов, обусловленную наличием водородных связей, уменьшая скорость инактивации.
В настоящее время установлено, что белки, входящие в состав мяса, денатурируют по мере достижения определенной для каждого белка температуры (таблица 1). Наиболее чувствителен к нагреву миозин. В интервале температур 45...50 °С денатурирует основная часть структурных белков мышц. Саркоплазматические белки (миоген и миоглобин) денатурируют при более высоких температурах (55...70 °С). Наиболее устойчивы к денатурации миопротеиды (большая часть ферментов), а также гемоглобин, сывороточный альбумин, коллаген.
Таблица 1.
Белки мяса |
Температура денатурации,0С |
Миозин |
45-55 |
Актин |
50-55 |
Актомиозин |
42-48 |
Миоген |
55-56 |
Миольбумин |
45-47 |
Глобулин X |
50-80 |
Миоглобин |
60-70 |
Коллаген |
58-65 |
Эластин |
125 |
Установлено, что денатурация
происходит ступенчато, т. е. при достижении
белком определенной температуры он
приобретает соответствующую
В процессе тепловой денатурации и последующей коагуляции происходят структурные изменения белков, разрыв прежних и образование новых связей при участии водородных связей, сульфгидрильных, дисульфидных, кислых и основных групп белков и гидрофобных взаимодействий.
Р. Гамм показал, что нагрев мяса в воде от 20 до 70 °С вызывает ступенчатое уменьшение числа карбоксильных групп в белках миофибрилл при существенно не изменяющемся количестве основных групп. Достоверные изменения кислых групп начинаются при температуре 40 °С. В интервале 40...50 °С количество их снижается, при 50...55 °С оно остается неизменным. При температуре выше 55 °С число кислых групп продолжает уменьшаться, а при температуре около 60 °С оно уменьшается очень значительно. Общее снижение числа кислых групп при нагревании до 70 °С составляет 85 %. При температуре от 70 до 120 °С наряду с дальнейшим сокращением числа кислых групп начинается уменьшение числа основных.
Изменение соотношения заряженных
(кислых и основных) групп в результате
денатурации и
На величину смещения рН
влияет также анатомическое