Логическая структура и основные характеристики понятий

Автор работы: Пользователь скрыл имя, 15 Января 2013 в 11:38, творческая работа

Краткое описание

Понятие обычно определяют как одну из основных форм мышления; этим подчеркивается важная роль его в познании. Переход от чувственной ступени познания к абстрактному мышлению характеризуется прежде всего как переход от отражения мира в формах ощущений, восприятий и представлений к отражению его в понятиях и на их основе в суждениях и теориях. Мышление, таким образом, может рассматриваться как процесс оперирования понятиями. Именно благодаря понятиям мышление приобретает характер обобщенного отражения действительности.

Вложенные файлы: 1 файл

Логика.doc

— 64.50 Кб (Скачать файл)

Основные данные о работе

Версия шаблона

1.1

Филиал

Вельский

Вид работы

Творческая работа

Название дисциплины

Логика

Тема

Логическая структура  и основные характеристики понятий

Фамилия студента

Истомина

Имя студента

Анжелика

Отчество студента

Юрьевна

№ контракта

13800100201003


 

Содержание

Логическая структура и основные характеристики понятий….…………………3

Основная часть

Логическая структура и основные характеристики понятий

 

Понятие обычно определяют как одну из основных форм мышления; этим подчеркивается важная роль его в познании. Переход от чувственной ступени познания к абстрактному мышлению характеризуется прежде всего как переход от отражения мира в формах ощущений, восприятий и представлений к отражению его в понятиях и на их основе в суждениях и теориях. Мышление, таким образом, может рассматриваться как процесс оперирования понятиями. Именно благодаря понятиям мышление приобретает характер обобщенного отражения действительности. Понятие как форма (вид) мысли, или как мысленное образование, есть результат обобщения предметов некоторого вида и мысленного выделения соответствующего класса (множества) по определенной совокупности общих для предметов этого класса – и в совокупности отличительных для них – признаков.        

Характеристика  понятия как формы познания, как способа мыслительной деятельности явствует из данного определения. Это – способ мысленного выделения классов предметов посредством обобщения этих предметов. Этот процесс включает, как правило, более или менее широкое множество приемов познания. Наибольшую ценность в познании представляют собой понятия, в которых предметы обобщаются по существенным признакам. Однако с гносеологической точки зрения мысль представляет собой понятие независимо от того, насколько существенными являются признаки, составляющие основу обобщения предметов, тем более, что для предметов одного и того же класса возможны, как мы уже говорили, и менее и более существенные признаки, существенные для характеристики самих этих предметов или с какой-то точки зрения в связи с тем или иным использованием предметов.

Совокупность признаков, по которым  обобщаются предметы в понятии, называется содержанием данного понятия, точнее было бы сказать основным содержанием. Различают основное и полное содержание понятия и в связи с этим различают само понятие просто как охарактеризованное выше обобщение предметов, то есть как смысл общего имени и как некоторую систему знаний. При корректном способе образования понятия основное содержание его — это совокупность признаков, которые все вместе достаточны, а каждый необходим для того, чтобы выделить данный класс предметов, то есть отличить эти предметы от других. Например, добавление перпендикулярности диагонали к содержанию указанного понятия квадрата делает совокупность избыточной; данный признак является производным — выводимым из основного содержания понятия квадрата. Класс обобщаемых в понятии предметов называется его объемом. Мыслимые (обобщаемые в понятии) предметы - носители признаков, составляющих содержание понятия, — суть элементы объема этого понятия. Части объема — это виды предметов, обобщенных в понятии, и выделение их означает выявление определенных различий внутри класса предметов. Обобщая предметы в понятиях, отвлекаются от всяких различий внутри соответствующего класса предметов. Но когда понятие образовано, возникает обычно необходимость выявления их уже на основе полученного обобщения. Это выявление осуществляется в форме особой операции, называемой делением понятия, и представляет собой определенную конкретизацию данного понятия. Необходимость выявления их уже на основе полученного обобщения. Это выявление осуществляется в форме особой операции, называемой делением понятия, и представляет собой определенную конкретизацию данного понятия.

Утверждение о том, что  некоторый предмет а составляет элемент класса К, представляющий объем некоторого понятия, записывается в виде а Е К (Е — знак отношения принадлежности предмета классу). Обозначением утверждения о том, что некоторый класс предметов К 0 является частью (подмножеством) некоторого класса К служит: К 0 аК « с » - знак включения класса в класс, когда К 0 и К различны; когда же не исключается, что К 0 совпадает с К, употребляется знак с.

Имеется связь между  этими отношениями: утверждение

К 0 сК= * Vjt { xEKq ^ xEK ).

Ясно, что если а Е К, где К — объем некоторого понятия, то а обладает всеми признаками, составляющими содержание этого понятия и наоборот.

Например, объем понятия «студент» - есть класс всех людей, обладающих этими признаками, то есть класс  всех тех, кого мы называем студентами. Отдельные люди этого множества — элементы его объема. Частями объема являются, например, множество студентов технических вузов, а также гуманитарных, множество студентов выпускников и начинающих обучение и т. д. Следует обратить внимание на то, что объем понятия в отличие от содержания понятия не является частью понятия как мысли. Он представляет собой класс реально или, по крайней мере, независимо от понятия существующих объектов. Указание на объем понятия при его характеристике есть указание именно на то, к чему относится данное понятие, на то, что обобщается в нем.

Для понимания структуры  понятия существенно учитывать, что выделение мыслимого в  нем множества предметов осуществляется всегда в пределах некоторого более  широкого класса. Интересующие нас  предметы мы мыслим в понятии как  вид предметов некоторого рода, как нечто особенное в пределах чего-то общего. Так, треугольники мыслятся как знак равносильности. вид плоских геометрических фигур; механическое движение — как вид изменения (именно изменение положения тела в пространстве), деревья — как вид растений; хозрасчет — как вид способов (методов) ведения хозяйства и т. д. В соответствии с этим среди признаков, составляющих содержание понятия, выделяются родовые и те, что составляют видовые отличия мыслимых в понятии предметов. Так, например, в формулировке понятия квадрата: «Четырехугольник с прямыми углами и равными сторонами» или более развернуто: «Плоская, замкнутая, ограниченная четырьмя равными сторонами фигура, все стороны которой равны и углы прямые» — слова «плоская, замкнутая, ограниченная четырьмя сторонами фигура» указывают родовые признаки понятия, а «прямоугольность» и «равносторонность» составляют видимое отличие «квадрата», именно то, что выделяет квадраты в множестве четырехугольных геометрических фигур. Род понятия составляет субстанционная часть, а видовое отличие — его атрибутивная часть. Вместе с тем указанное разделение признаков на родовые и видовые не является абсолютным. В зависимости от задач, с которыми связано образование понятия, в качестве рода может быть взят один или другой, более широкий класс. Те же квадраты мы можем мыслить и как вид четырехугольников, и как вид замкнутых плоских геометрических фигур, относя «четырехугольность» в таком случае к видовому их отличию, а также вид геометрических фигур вообще. В каждом из указанных случаев мы получим различные понятия об одних и тех же предметах, более того, возможно обобщение одних и тех же предметов в различных понятиях по различным совокупностям признаков вообще. Металлы, например, можно мыслить как химически простые вещества с особой, ионной, кристаллической решеткой или как химически простые вещества, атомы которых обладают низким коэффициентом ионизации. Один и тот же класс треугольников может быть обобщен в понятиях «равносторонний треугольник» и «равноугольный треугольник».

Также элементами объема понятия могут быть отдельные предметы (индивиды) и некоторые системы объектов: пары, тройки и т. д. Например, в понятиях «изотопы», «братья», «родственники» мыслятся некоторые пары этих предметов, обобщаемые по признакам, представляющим собой двухместное отношение: «изотоп», «брат», «родственник» и т. д. Вообще, элементами объема понятия могут быть системы, представляющие собой некоторые множества предметов с заданными на них отношениями (в математике называемых структурами). Таковы, например, группы, составляющие предмет теории групп, решетки, булевы алгебры и т. д. Совокупность признаков, составляющих видовое отличие понятия, можно и полезно мыслить как некоторый один признак, объединяющий все признаки в конъюнкцию. В таком случае видовое отличие представляется в виде некоторого предиката — либо одноместного, либо многоместного, — в зависимости от того, являются ли элементами объема понятия индивиды или системы предметов. Для выражения видовых отличий понятий можно использовать язык логики предикатов. Если при этом видовое отличие представляет одноместный предикат А(х), то структура понятия может быть представлена в виде хА[х). Родовые признаки понятия в таком случае составляют характеристику области D — возможных значений переменной х, а все выражение «хА(х)» означает: «предмет х из области D такой, что он обладает признаком А(х)». Например, «плоская геометрическая фигура, замкнутая, ограниченная четырьмя сторонами, имеющая равные стороны и прямые углы» (квадрат) можно представить в виде: хА{х), где область х — множество плоских геометрических фигур, а А(х) есть конъюнкция признаков: замкнутая, ограниченная четырьмя сторонами, имеющая равные стороны и прямые углы.

Понятие «изотопы» будет  нами представлено в виде: {х, у) А(х, у). Область х и у - химические элементы, а А{х, у) означает: заряд ядра атома х равен заряду ядра у. С лингвистической точки зрения выражениехА{х), как и (*, у) А(х, у) и (х, у, г) А [х, у, z ), представляют собой описательные общие имена. На их основе могут быть образованы единичные описательные имена с использованием оператора « ?» («тот ..., который ...»): если объем понятия хА{х) является единичным классом, то правомерно образовать единичное имя — ?хА(х) (тот предмет х из области D , который обладает свойством А(х)). Например, из общего понятия «небесное тело (В), вращающееся вокруг Солнца и являющееся ближайшим к Солнцу (А(*))» образуем: «то небесное тело, которое вращается вокруг Солнца и является ближайшим к нему». Это описательное единичное имя планеты Меркурий. Смысл единичного описательного имени 7хА{х) — это своеобразное понятие, которое в отличие от общего понятия хА(х) содержит дополнительную информацию о мыслимом предмете, о том, что этот предмет является единственным обладателем свойства А{х). Такие понятия принято называть индивидными концептами.

 

 




Информация о работе Логическая структура и основные характеристики понятий