Автор работы: Пользователь скрыл имя, 25 Февраля 2014 в 08:13, реферат
Сложные суждения образуются путём соединения между собой простых суждений при помощи логических союзов. Существует множество таких союзов, но главными из них в современной логике считаются следующие: конъюнкция, исключающая и не исключающая дизъюнкции, импликация и эквивалентность. В естественном языке они выражаются при помощи грамматических союзов «и», «либо…, либо», «или», «если…, то», «тогда, и только тогда». Не следует полностью отождествлять логические и грамматические союзы, в логике они приобретают специфический смысл.
Каждый из союзов бинарен, то есть соединяет между собой два суждения.
Все умозаключения принято делить на виды по различным основаниям: по составу, по количеству посылок, по характеру логического следования и степени общности знаний в посылках и заключении.
По составу все умозаключения делятся на простые и сложные. Простыми называются умозаключения, элементы которых не являются умозаключениями. Сложными называют умозаключения, состоящие из двух или более простых умозаключений.
По количеству посылок умозаключения делятся на непосредственные (из одной посылки) и опосредованные (из двух и более посылок).
По характеру логического следования все умозаключения делятся на необходимые (демонстративные) и правдоподобные (недемонстративные, вероятные). Необходимые умозаключения - такие, в которых истинное заключение обязательно следует из истинных посылок (т. е. логическое следование в таких выводах представляет собой логический закон). К необходимым умозаключениям относятся все виды дедуктивных умозаключений и некоторые виды индуктивных («полная индукция»).
Правдоподобные умозаключения - такие, в которых заключение следует из посылок с большей или меньшей степенью вероятности. Например, из посылок: «Студенты первой группы первого курса сдали экзамен по логике», «Студенты второй группы первого курса сдали экзамен по логике» и т. п. следует «Все студенты первого курса сдали экзамен по логике» с большей или меньшей степенью вероятности (что зависит от полноты наших знаний обо всех труппах студентов первого курса). К правдоподобным умозаключениям относятся индуктивные и умозаключения по аналогии.
Дедуктивное умозаключение (от лат. deductio - выведение) - такое умозаключение, в котором переход от общего знания к частному является логически необходимым.
Путем дедукции получаются достоверные выводы: если истинны посылки, то будут истинны и заключения.
Пример:
Если человек совершил преступление, то он должен быть наказан.
Петров совершил преступление.
Петров должен быть наказан.
Индуктивное умозаключение (от лат. inductio - наведение) - такое умозаключение, в котором переход от частного знания к общему осуществляется с большей или меньшей степенью правдоподобности (вероятности).
Например:
Кража - уголовное преступление.
Грабеж - уголовное преступление.
Разбой — уголовное преступление.
Мошенничество - уголовное преступление.
Кража, грабеж, разбой, мошенничество - преступления против собственности.
Следовательно, все преступления против собственности – уголовные преступления.
Поскольку в основу данного заключения положен принцип рассмотрения не всех, а лишь некоторых предметов данного класса, то умозаключение называется неполной индукцией. В полной индукции обобщение происходит на основе знаний всех предметов исследуемого класса.
В умозаключении по аналогии (от греч. analogia - соответствие, сходство) на основе сходства двух объектов по каким-то одним параметрам делается вывод об их сходстве по другим параметрам. Например, на основе сходства способов совершения преступлений (кражи со взломом) можно сделать предположение о том, что эти преступления совершались одной и той же группой преступников.
Все виды умозаключений могут быть правильно построенными и неправильно построенными.
Простые суждения — суждения, составными частями которых являются понятия. Простое суждение можно разложить только на понятия.
Сложные суждения — суждения, составными частями которых являются простые суждения или их сочетания. Сложное суждение может рассматриваться как образование из нескольких исходных суждений, соединенных в рамках данного сложного суждения логическими союзами (связками). От того, при помощи какого союза связываются простые суждения, зависит логическая особенность сложного суждения.
Сложные суждения состоят из ряда простых («Человек не стремится к тому, во что не верит, и любой энтузиазм, не подкрепляясь реальными достижениями, постепенно угасает»), каждое из которых в математической логике обозначается латинскими буквами (A, B, C, D… a, b, c, d…). В зависимости от способа образования различают конъюнктивные, дизъюнктивные, импликационные, эквивалентные и отрицательные суждения.
Дизъюнктивные суждения образуются с помощью разделительных (дизъюнктивных) логических связок (аналогичных союзу «или»). Подобно простым разделительным суждениям, они бывают:
Импликационные суждения образуются с помощью импликации, (эквивалентно союзу «если …, то»). Записывается как или . В естественном языке союз «если …, то» иногда является синонимом союза «а» («Погода изменилась и, если вчера было пасмурно, то сегодня ни одной тучи») и, в таком случае, означает конъюнкцию.
Конъюнктивные суждения образуются с помощью логических связок сочетания или конъюнкции (эквивалентно запятой или союзам «и», «а», «но», «да», «хотя», «который», «зато» и другим). Записывается как .
Эквивалентные суждения указывают на тождественность частей суждения друг другу (проводят между ними знак равенства). Помимо определений, поясняющих какой-либо термин, могут быть представлены суждениями, соединенными союзами «если только», «необходимо», «достаточно» (например: «Чтобы число делилось на 3, достаточно, чтобы сумма цифр, его составляющих, делилась на 3»). Записывается как (у разных математиков по-разному, хотя математический знак тождества всё-таки ).
Отрицательные суждения строятся с помощью связок отрицания «не». Записываются либо как a ~ b, либо как a b (при внутреннем отрицании типа «машина не роскошь»), а также с помощью черты над всем суждением при внешнем отрицании (опровержении): «не верно, что …» (a b).
Суждения А (обще-утвердительные суждения) Распределяет свое подлежащее (S), но не распределяет свое сказуемое (P)
Объем подлежащего (S) меньше объема сказуемого (Р)
Объемы подлежащего и сказуемого совпадают
Суждения Е (обще-отрицательные суждения)
Распределяет как подлежащее (S), так и
сказуемое (P)
В этом суждении мы отрицаем всякое совпадение между подлежащим и сказуемым
Суждения I (частно-утвердительные суждения)
Ни подлежащие (S), ни сказуемые (P) не распределены
Часть класса подлежащего входит в класс сказуемого.
Суждения О (частно-отрицательные суждения)
Распределяет свое сказуемое (Р), но не
распределяет свое подлежащее (S) В этих
суждениях мы обращаем внимание на то,
что есть несовпадающего между ними (заштрихованная
область)