Газотурбинные двигатели

Автор работы: Пользователь скрыл имя, 12 Апреля 2012 в 17:21, контрольная работа

Краткое описание

В современной технике разработано и используется множество различных типов двигателей. В данной работе рассматривается лишь один тип – газотурбинные двигатели (ГТД), т.е. двигатели, имеющие в своём составе компрессор, камеру сгорания и газовую турбину. ГТД широко применяются в авиационной, наземной и морской технике .

Содержание

Введение 3



1. История развития ГТД 6



2. Устройство ГТД 11



3. Используемые ГСМ 17



4. Требования экологии и безопасности 18



5. Области применения 19



Заключение 22



Используемая литература 23

Вложенные файлы: 1 файл

транспортная энергетика.doc

— 311.00 Кб (Скачать файл)

Работы над проектированием и созданием ТРД, не имевших винта и способных обеспечить в несколько раз большие, чем ТВД, скорости полета, начал в 1937 г. А.М. Люлька. Сотрудник Харьковского авиационного института Люлька специалист по паротурбинной технике. Он в инициативном порядке разработал проекты ТРД как с центробежным одно- и двухступенчатым компрессором (РТД-1, 1937 г.), так и с осевым компрессором (РД-1,1938 г.). Рабочие чертежи выбранного ТРД РД-1 с осевым компрессором и с тягой 500 кгс были сданы в производство на Кировский завод в Ленинграде в 1940 г.

 

       В 1941 г. началась сборка двигателя РД-1, приостановленная с началом Великой Отечественной войны. В 1942 г. узлы РД-1 и документация были вывезены в ЦИАМ. Работы в ЦИАМ по ТРД под руководством А.М. Люльки возобновились только в 1943 году (А.М. Люлька некоторое время работал на танковом заводе в Челябинске и в КБ Болховитинова). Двигатель был модернизирован — его тяга увеличилась до 1200 кгс — и получил обозначение С-18 (стендовый). В марте 1944 г. было получено задание от Наркомата на изготовление пяти экземпляров С-18, а коллектив А.М. Люльки был переведён в НИИ-1, где сосредотачивались все работы по реактивной технике. В сентябре 1944 г. двигатель С-18 собран и испытан. В процессе первых испытаний выявилось большое количество дефектов, наиболее разрушительным из которых был помпаж компрессора. К концу войны в НИИ-1 появились трофейные немецкие двигатели Юмо-004 и BMW-003 с тягой 900 и 800 кгс, однако довод и развитие ТРД С-18 были продолжены, и на его базе был спроектирован ТРД ТР-1 с тягой 1350 кгс. Копирование ТРД Юмо и BMW было поручено другим ОКБ. После успешного испытания двигателя С-18 в конце 1945 г. работы по TP-1 форсировались. К их изготовлению малой серией был подключен завод № 45 (ММПП "Салют") и было организовано новое конструкторское бюро ОКБ-165, которое возглавил А.М. Люлька. В августе 1946 г. ТР-1 поставлен на испытания. В феврале 1947 г. проведены государственные испытания – получена тяга 1290 кгс и ресурс 20 часов. В течение 1948-1950-х гг. создаётся ряд модификаций с последовательно увеличивающейся тягой, вплоть до тяги 5000 кгс на двигателе ТР-3А, названном АЛ-5. Двигатели изготовлялись малой серией и устанавливались на опытных самолётах Ильюшина, Сухого, Лавочкина.

      Следует отметить, что первые отечественные двухконтурные двигатели начали создаваться в 1950-х гг. в других ОКБ. Это двигатели Д-20 конструкции П.А. Соловьёва и НК-6 конструкции Н.Д. Кузнецова, представлявшие собой двухвальные ТРДД со степенью двухконтурности 1,5 и 2,0 и с форсажом в наружном контуре. Двигатели НК-6 и Д-20 не производились серийно, но они послужили базой для создания многих хорошо известных ТРДД и ТРДДФ различного назначения, выпускавшихся большими сериями: Д-20П, Д-30, Д-30КУ/КП, Д-30Ф6, НК-8, НК-86, НК-144-22, НК-32.

     Первым отечественным серийным ТРДД был двухвальный Д-20П конструкции П.А. Соловьёва, прошедший 100-часовые испытания в декабре 1959 г. и оснащавший самолёт Ту-124.

     Выдвинутая еще в предвоенные годы техническая идея А.М. Люльки во второй половине XX века была широко реализована во всем мировом авиадвигателестроении ТРДД стали доминирующими как в гражданской, так и в военной авиации.

Бесспорно, что российские ученые и конструкторы, и прежде всего - Б.С. Стечкин, В.В. Уваров, А.М. Люлька, В.Я. Климов, С.К. Туманский, В.А. Добрынин, Н.Д. Кузнецов, П.А. Соловьев, С.П. Изотов, внесли выдающийся вклад в развитие современного мирового газотурбинного         

авиадвигателестроения.

      В послевоенные годы развитие отечественной газотурбинной авиационной техники, опираясь на собственные предшествующие исследования и разработки, а также на изучение трофейных немецких и закупленных английских ТРД, шло широким фронтом и высокими темпами во многих двигателестроительных КБ.

      В один и тот же день, 27 апреля 1946 г., совершили первые полеты реактивные истребители Як-15 и МиГ-9. В конце 1947 г. первый полет совершил знаменитый истребитель МиГ- 15 с двигателем РД-45Ф.

     В 1949 г. под руководством В.Я. Климова на базе двигателей Нин-1 и Нин-2 создан ТРД ВК-1 с тягой 2700 кгс, а в 1951 г. - ТРДФ ВК-1Ф с тягой 3380 кгс. Суммарный выпуск этих двигателей в период с 1949 по 1958 гг. составил 20 000 штук.

     В период 1945-1946 гг. на территории Восточной Германии под руководством советского представителя Н.М. Олехновича дорабатывались и развивались модификации двигателей BMW-003 и Юмо-004. Это был ТВД BMW-109-028 (начало проектирования - 1940 г.) с двенадцатиступенчатым осевым компрессором, четырехступенчатой турбиной, с редуктором и двухрядным винтом противоположного вращения мощностью 7940 л.с., а также ТРД BMW-109-018 с трехступенчатой турбиной и тягой 3400 кгс.

       С конца 1946 г. на заводе № 2 в Куйбышеве (Самара) с участием переведенных в ноябре 1946 г. немецких специалистов испытывались и дорабатывались два основных двигателя: ТРД BMW-018 с тягой 3400 кгс и ТРД Юмо-012 с тягой 3000 кгс (рис. 9). Первоначально эти двигатели разрабатывались и испытывались в 1946 г. в Германии в г. Штасфурте (главный конструктор К. Престель) и в г. Дессау (главный конструктор А. Шайбе).

 

Если BMW-018 использовался как экспериментальный и учебный, то Юмо-012 развивался и стал базой для создания ТВД ТВ-022 мощностью 5100 л.с. На двигателе ТВ-022 были сконцентрированы все силы завода № 2, после того как прибывший в мае 1949 г. из Уфы новый главный конструктор Н.Д. Кузнецов сменил на этом посту Н.М. Олехновича.

       В 1950 г. прошел 200-часовые испытания ТВД ТВ-022, получивший позднее обозначение ТВ-2. В 1951 г. он был форсирован до 6250 л.с. и назван ТВ-2Ф. С двумя спаренными ТВ-2Ф опытный дальний тяжелый бомбардировщик Ту-95-1 выполнил шестнадцать полетов до катастрофической поломки редуктора 11 мая 1953 г.

        В ноябре 1953 г. немецкие специалисты вернулись в ГДР в г. Пирна, где до 1960 г. под руководством д-ра Р. Шейноста создали ряд модификаций: ТРД Пирна-014, -020 и ТВД Пирна-018 (с тягами 3160…3730 кгс и мощностью 3680 л.с.).В связи с катастрофой ТВД ТВ-2Ф было ускорено создание нового, самого мощного в мире ТВД НК-12. Он имел мощность 12500 л.с., четырнадцатиступенчатый компрессор на  = 9,5 и пятиступенчатую турбину с К. НК-12 прошел 100-часовые государственные испытания 25 декабря 1954 г. А 19 июня 1956 г. прошла госиспытания модификация ТВД НК-12М мощностью 15000 л.с. Двигатели НК-12 и НК-12М устанавливались на самолеты Ту-95, Ту-126, Ту-142, Ту-114, Ан-22 ("Антей") и экраноплан.

 

      Такова история создания первых опытных и серийных отечественных авиационных ТРД и ТВД.В середине 1950-х гг. создаются двигатели второго поколения. Из них наиболее выдающиеся ТРД и ТРДФ - РД-9Б, АЛ-7Ф, Р11-300, РД-3М, ВД-7, ТВД НК-12, АИ-20.

      В 1960-е и вначале 1970-х годов в эксплуатации появляются ТРДД - это Д-20П, Д-30, Д-30КУ/КП, НК-8-4, НК-8-2У, НК-144 и высокопараметрические ТРДФ АЛ-21Ф и Р27, -29-300.

     Все эти двигатели относятся к двигателям третьего поколения с относительно высокими параметрами цикла  = 12…20, К и охлаждаемой турбиной.

      С середины 1970-х годов по 1990-е годы в СССР созданы ряд выдающихся двигателей четвертого поколения — первые двигатели с большой степенью двухконтурности Д-36, Д-18, ПС-90А, а также военные ТРДДФ Д-30Ф6, НК-32, РД-33 и AЛ-31Ф, характеризующиеся высокими параметрами цикла  = 20…37, К, освоением новых технологий и материалов.

       В середине 1980-х гг. начато создание двигателей пятого поколения — ТВВД НК-93 и Д-27 (с капотированным и открытым вентилятором) и ТРДДФ AЛ-41Ф, доводка которого продолжается.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Устройство ГТД

 

Идея применить в автомобилях газотурбинные двигатели возникла давно. Но лишь за последние несколько лет их конструкция достигла той степени совершенства, которая дает им право на существование.

Высокий уровень развития теории лопаточных двигателей, металлургии и техники производства обеспечивает теперь реальную возможность создания надежных газотурбинных двигателей, способных с успехом заменить на автомобиле поршневые двигатели внутреннего сгорания.

Что представляет собой газотурбинный двигатель?

 

Рис. 1. Принципиальная схема газотурбинного двигателя

 

На рис. 1 показана принципиальная схема такого двигателя. Ротационный компрессор 9, находящийся на одном валу 8 с газовой турбиной 7, засасывает воздух из атмосферы, сжимает его и нагнетает в камеру сгорания 3. Топливный насоc 1, также приводимый в движение от вала турбины, нагнетает топливо в форсунку 2, установленную в камере сгорания. Газообразные продукты сгорания поступают через направляющий аппарат 4 на рабочие лопатки 5 колеса газовой турбины 7 и заставляют его вращаться в одном, определенном направлении. Газы, отработавшие в турбине, выпускаются в атмосферу через патрубок 6. Вал 8 газовой турбины вращается в подшипниках 10.

 

По сравнению с поршневыми двигателями внутреннего сгорания газотурбинный двигатель обладает весьма существенными преимуществами. Правда, он тоже еще не свободен от недостатков, но они постепенно ликвидируются по мере развития конструкции.

 

Характеризуя газовую турбину, прежде всего следует отметить, что она, как и паровая турбина, может развивать большие обороты. Это дает возможность получать значительную мощность от гораздо меньших по размерам (по сравнению с поршневыми) и почти в 10 раз более легких по весу двигателей.

 

Вращательное движение вала является по существу единственным видом движения в газовой турбине, в то время как в двигателе внутреннего сгорания, помимо вращательного движения коленчатого вала, имеет место возвратно-поступательное движение поршня, а также сложное движение шатуна. Газотурбинные двигатели не требуют специальных устройств для охлаждения. Отсутствие трущихся деталей при минимальном количестве подшипников обеспечивают длительную работоспособность и высокую надежность газотурбинного двигателя.

Наконец, важное значение имеет то обстоятельство, что для питания газотурбинного двигателя используется керосин либо топлива типа дизельных, т.е. более дешевые, чем бензин.

 

Основная причина, которая сдерживает развитие автомобильных газотурбинных двигателей, заключается в необходимости искусственно ограничивать температуру газов, поступающих на лопатки турбины. Это снижает коэффициент полезного действия двигателя и приводит к повышенному удельному расходу топлива (на 1 л.с.).

Температуру газа приходится ограничивать для газотурбинных двигателей пассажирских и грузовых автомобилей в пределах 600—700°C, а в авиационных турбинах до 800—900°C потому, что еще очень дороги высокожаропрочные металлы.

 

В настоящее время уже существуют некоторые способы повышения коэффициента полезного действия газотурбинных двигателей путем охлаждения лопаток, использования тепла отработавших газов для подогрева поступающего в камеры сгорания воздуха, производства газов в высокоэффективных свободно-поршневых генераторах, работающих по дизель-компрессорному циклу с высокой степенью сжатия и т. д. От успеха работ в этой области во многом зависит решение проблемы создания высокоэкономичного автомобильного газотурбинного двигателя.

 

 

 

Большинство существующих автомобильных газотурбинных двигателей построено по так называемой двухвальной схеме с теплообменниками. На рис. 2 представлена такая схема.

 

 

Рис.2. Принципиальная схема двухвального газотурбинного двигателя с теплообменником

 

 

Здесь для привода компрессора 1 служит специальная турбина 8, а для привода колес автомобиля — тяговая турбина 7. Валы турбин не соединены между собой. Газы из камеры сгорания 2 вначале поступают на лопатки турбины привода компрессора, а затем на лопатки тяговой турбины. Воздух, нагнетаемый компрессором, прежде чем поступить в камеры сгорания, подогревается в теплообменниках 3 за счет тепла, отдаваемого отработавшими газами.

 

Применение двухвальной схемы создает выгодную тяговую характеристику газотурбинных двигателей, позволяющую сократить число ступеней в обычной коробке передач автомобиля и улучшить его динамические качества.

 

Ввиду того, что вал тяговой турбины механически не связан с валом турбины компрессора, число его оборотов может изменяться в зависимости от нагрузки, не оказывая существенного влияния на число оборотов вала компрессора. Вследствие этого характеристика крутящего момента газотурбинного двигателя имеет вид, представленный на рис. 3, где для сопоставления нанесена также и характеристика поршневого автомобильного двигателя (пунктиром).

 

Рис. 3. Характеристики крутящего момента двухвального газотурбинного двигателя и поршневого

 

Из диаграммы видно, что у поршневого двигателя по мере уменьшения числа оборотов, происходящего под влиянием возрастающей нагрузки, крутящий момент вначале несколько возрастает, а затем падает. В то же время у двухвального газотурбинного двигателя крутящий момент автоматически возрастает по мере увеличения нагрузки. В результате необходимость в переключении коробки передач отпадает либо наступает значительно позже, чем у поршневого двигателя. С другой стороны, ускорения при разгоне у двухвального газотурбинного двигателя будут значительно большими.

Характеристика одновального газотурбинного двигателя отличается от показанной на рис. 3 и, как правило, уступает, с точки зрения требований динамики автомобиля, характеристике поршневого двигателя (при равной мощности).

Большую перспективу имеет газотурбинный двигатель, схема которого показана на рис. 4. В этом двигателе газ для турбины вырабатывается в так называемом свободно-поршневом генераторе, представляющем собой двухтактный дизель и лоршневой компрессор, объединенные в общем блоке.

 

 

 

Информация о работе Газотурбинные двигатели