Автор работы: Пользователь скрыл имя, 12 Июня 2013 в 11:24, доклад
Биохимия – это наука о структуре веществ, входящих в состав живого организма, их превращениях и физико-химических процессах, лежащих в основе жизнедеятельности.
Биохимия является одной из фундаментальных дисциплин медицины и биологии. Она занимается познанием живого на уровне макромолекул. Биохимия – это результат интеграции биологии и химии.
Основным местом переваривания крахмала служит тонкий кишечник. Здесь происходят наиболее важные стадии гидролиза крахмала. В двенадцатиперсной кишке, куда открывается проток поджелудочной железы, под действием ферментов ПЖЖ (a-амилазы, амило-1,6-гликозидазы и олиго-1,6-гликозидазы) будет идти гидролиз крахмала. Выделяющийся сок поджелудочной железы содержит бикарбонаты, которые участвуют в нейтрализации кислого желудочного содержимого. Образующийся при этом углекислый газ способствует перемешиванию пищевого комка, создаётся слабощелочная среда (рН=8-9). Образующиеся катионы натрия и калия способствуют активации панкреатических гидролаз (a-амилаза, амило-1,6-гликозидаза, олиго-1,6-гликозидаза). Эти ферменты завершают гидролитический разрыв внутри гликозидных связей, начатых a-амилазой слюны.
Эритродекстрины превращаются в ахродекстрины. Под влиянием a-амилазы панкреатического сока завершается разрыв внутренних a-1,4-гликозидных связей в крахмале с образованием мальтозы. a-1,6-гликозидные связи в точках ветвления гидролизуются под действием амило-1,6-гликозидазы и олиго-1,6-гликозидазы, которая является терминальной (последней) в этом процессе.
Т.о. три панкреатических фермента завершают гидролиз крахмала в кишечнике с образованием мальтоз. Из тех глюкозных остатков, которые в молекуле крахмала были соединены с помощью a-1,6-гликозидных связей, образовались дисахариды – изомальтозы.
Слизистая оболочка тонкой кишки (энтероциты) синтезирует мальтазы (изомальтазы), лактазы и сахаразы. Образующиеся в результате гидролиза мальтоза, изомальтоза являются временным продуктом гидролиза, и в клетках кишечника они быстро гидролизуются под влиянием кишечных мальтазы, изомальтазы на две молекулы глюкозы. Т.о. в результате гидролиза крахмала в органах пищеварения образуется конечный продукт – глюкоза.
В составе пищи кроме полисахаридов поступают и дисахариды (лактоза и сахароза), которые подвергаются гидролизу только в тонком кишечнике. В энтероцитах синтезируются специфические ферменты: лактаза и сахараза, которые осуществляют гидролиз этих дисахаридов с образованием глюкоз, галактоз и фруктоз. Продукты полностью перевариваются. Углеводы - моносахариды всасываются в кровь и на этом завершается начальный этап обмена углеводов в организме человека - пищеварение.
Было установлено, что для всасывания моносахаридов (глюкозы) в кровь необходимо наличие в энтероцитах:
- в цитоплазме - ионов калия, натрия, АТФ и воды.
- в биомембранах - специфических белков–переносчиков и фермента - АТФ-азы.
90% образовавшейся в результате гидролиза крахмала глюкозы всасывается в кровь и через систему воротной вены поступает в печень, где депонируется в виде резервного полисахарида - гликогена. Около 10% всасывающихся в кровь моносахаридов попадает в большой круг кровообращения, разносится к органам и тканям, которые используют их в метаболических реакциях.
С пищей в организм человека поступает клетчатка – полисахарид, состоящий из остатков b-D- глюкопиранозы. В ЖКТ человека она гидролизу не подвергается, поскольку не вырабатываются b-гликозидазы, которые расщепляют её до глюкозы.
Биологическая роль клетчатки:
1. формирует пищевой комок;
2. продвигаясь по ЖКТ
она раздражает слизистую
3. усиливает перистальтику кишечника;
4. нормализует кишечную микрофлору.
Достигая толстого отдела кишки, она под действием ферментов микрофлоры подвергается частичному сбраживанию с образованием глюкозы, малата, газообразных веществ. Глюкозы образуется мало, но она всасывается в кровь.
Биологический синтез гликогена
Установлено, что гликоген образуется почти во всех клетках организма, однако наибольшее содержание гликогена обнаружено в печени (2-6%) и в мышцах (0,5-2%). Т.к. общая мышечная масса организма человека велика, то большая часть всего гликогена содержится в мышцах.
Глюкоза из крови легко поступает в клетки организма и в ткани, легко проникая через биологические мембраны. Инсулин обеспечивает проницаемость мембран, это единственный гормон, обеспечивающий транспорт глюкозы в клетки органов и тканей. Как только глюкоза поступает в клетку, она сразу же как бы запирается в ней. В результате первой метаболической реакции, катализируемой ферментом гексакиназой в присутствии АТФ, глюкоза превращается в фосфорный эфир – глюкозо-6-фосфат, для которого клеточная мембрана не проницаема. Глюкозо-6-фосфат теперь будет использоваться клеткой в метаболических реакциях (анаболизм, катаболизм). Из клетки глюкоза может обратно выйти в кровь только после гидролиза под действием фосфатазы (глюкозо-6-фосфатазы). Этот фермент есть в печени, почках, в эпителии кишечника, в других органах и тканях его нет, следовательно, проникновение глюкозы в клетки этих органов и тканей необратимо.
Процесс биосинтеза гликогена можно записать в виде 4-х стадий:
глюкоза® (гексакиназа, АТФ®АДФ) глюкозо-6-фосфат® (фосфоглюкомутаза) глюкозо-1-фосфат® (глюкозо-1-фосфат-уридин трансфераза) УДФ-глюкоза® (гликоген-синтетаза, +[C6Н10О5]n) [C6Н10О5]n+1 (это наращенный гликоген) +УДФ
Затем УДФ+АТФ®(
Гликогенсинтаза является трансферазой, которая переносит остатки глюкозы, входящие в УДФ-глюкозу на гликозидную связь остаточного в клетке гликогена. При этом образуются a-1,4- гликозидные связи. Образование a-1,6-гликозидных связей в точках ветвления гликогена катализирует специальный фермент гликогенветвящий.
Гликоген в клетках печени накапливается во время пищеварения, и рассматривается как резервная форма глюкозы, которая используется в промежутках между приёмами пищи.
Распад гликогена
Он может идти двумя путями:
1. Основной – фосфоролитический - протекает в печени, почках, эпителии кишечника.
Схематически его можно записать в виде 3-х стадий:
а) [C6Н10О5]n (это гликоген)® (фосфорилаза А, +Н3РО4) глюкозо-1-фосфат +[C6Н10О5]n-1
б) глюкозо-1-фосфат® (фосфоглюкомутаза) глюкозо-6-фосфат
в) глюкозо-6-фосфат® (глюкозо-6-фосфатаза, +Н2О) глюкоза + Н3РО4
2. Не основной – амилолитический. его доля мала и незначительна. Протекает в клетках печени при участии:
- a-амилазы слюны, расщепляющей a-1,4-гликозидные связи;
- амило-1,6-гликозидазы, расщепляющей a-1,6-гликозидные связи в точках ветвления гликогена;
- g-амилазы, которая последовательно отрывает концевые остатки глюкозы от боковых цепей гликогена.
Гликогеновые болезни
Гликогеновые болезни - наследственные нарушения обмена гликогена, которые связаны с недостаточностью какого–либо фермента, участвующего в синтезе или распаде гликогена. Как правило, эта недостаточность выражена в снижении активности или полном отсутствии фермента.
Различают гликогенозы – болезни, связанные с нарушением процесса распада гликогена. При этом клетки печени, мышц, почек накапливают большое количество гликогена, что ведет к разрушению клеток. У больных наблюдается увеличение печени, гипоглюкоземия натощак, мышечная слабость. Обычно такие больные умирают в раннем возрасте. Наиболее часто встречаются следующие гликогенозы:
- болезнь Герса,
связанная с недостаточной
- болезнь Мак-Ардля, -//- фосфорилазы мышц;
- болезнь Помпе, -//- a-1,4-гликозидазы;
- болезнь Гори, -//- амило-1,6-гликозидазы;
- болезнь Гирке, -//- глюкозо-6-фосфатазы.
Агликогенозы – заболевания, которые характеризуются нарушением синтеза гликогена. У больных: гипогликемия натощак, судороги, рвота, потеря сознания, постоянное углеводное голодание мозга приводит к отставанию умственного развития. Больные погибают в раннем возрасте. Наиболее часто встречаются следующие агликогенозы:
- болезнь Льюиса,
связанная с нарушением
- болезнь Андерсена, -//- гликогенветвящего фермента.
Пути катаболизма глюкозы
В зависимости от функционального состояния клеток органов и тканей, они могут находиться в условиях достаточного снабжения кислородом или испытывать его недостаток, находиться в условиях гипоксии.
Следовательно, катаболизм глюкозы в организме можно рассматривать с двух позиций: в аэробных и анаэробных условиях.
Анаэробный путь распада глюкозы в тканях называется гликолизом, если в анаэробных условиях распадается глюкозный остаток гликогена, то этот процесс называется гликогенолизом. Оба эти процесса протекают в цитоплазме клеток. Конечным продуктом окисления будет являться молочная кислота. В процессе окисления будет выделяться энергия за счет реакций субстратного фосфорилирования. Основная биологическая роль – энергетическая. Окисление глюкозы и глюкозного остатка гликогена в тканях отличается только в начальных стадиях превращения, до образования глюкозо-6-фосфата. Схематически это можно представить как:
глюкоза® (гексакиназа, АТФ®АДФ) глюкозо-6-фосфат;
[C6Н10О5]n (это гликоген)® (фосфорилаза А, +Н3РО4) глюкозо-1-фосфат +[C6Н10О5]n-1
глюкозо-1-фосфат ® (фосфоглюкомутаза) глюкозо-6-фосфат
Основные стадии гликолиза и гликогенолиза:
Процесс гликолиза сложный и многоступенчатый. Условно его можно разделить на 2 стадии.
1 стадия – завершается
образованием глицеральдегид-3-
1 стадия:
гексакиназа ↓ АТФ®АДФ
глюкозо-6-фосфатизомераза ↓
фосфофруктокиназа ↓ АТФ®АДФ
альдолаза ↓
Фосфодиоксиацетон под действием изомеразы может превращаться в глицеральдегид-3-фосфат.
2 стадия. На ней перед всеми формулами ставим 2, т.к. фосфодиоксиацетон изомеризовался и получилось 2 молекулы глицеральдегид-3-фосфата:
дегидрогеназа, +Н3РО4 ↓ НАД®НАДН2
дифосфоглицераткиназа ↓ АДФ®АТФ
фосфоглицеромутаза ↓
енолаза ↓
фосфоенолпируваткиназа ↓ АДФ®АТФ
ЛДГ ↓ НАДН2®НАД
Т.о. анаэробные
превращения глюкозы в тканях
завершается образование
С этапа образования триоз (альдолазная реакция) идет одновременная их окисление, в результате этих реакций образуется энергия в виде АТФ за счет реакций субстратного фосфорилирования (фосфоглицераткиназная и пируваткиназная реакции).
На этапе
гликолитической оксидоредукции идет
окисление гицеральдегид-3-
Митохондрии в анаэробных условиях блокированы, поэтому выделяемый в процессе окисления НАДН2 находиться в среде до тех пор, пока не образуется субстрат, способный принять его. ПВК принимает НАДН2 и восстанавливается с образованием лактата, завершая тем самым внутренний окислительно-восстановительный цикл гликолиза. НАД-окисленный выделяется и вновь может принимать участие в окислительном процессе, выполняя роль переносчика водорода.
Три реакции гликолиза являются необратимыми:
- гексакиназная реакция;
- фосфофруктокиназная реакция;
- пируваткиназная реакция.
Энергетический эффект гликолиза (гликогенолиза):
АТФ(глюкоза)=(2*2)–2=2
АТФ(гликоген)=(2*2)–1=3
Биологическая роль гликолиза – энергетическая. Гликолиз является единственным процессом в клетке, способным поставлять энергию в форме АТФ в бескислородных условиях. В кризисных ситуациях, когда клетки органов и тканей по каким то причинам находятся в анаэробных условиях, гликолиз является единственным источником скорой энергетической помощи для сохранения жизнедеятельности клеток, а в эритроцитах, где митохондрии отсутствуют, гликолиз вообще является единственным процессом, продуцирующим АТФ и поддерживающим их функции и целостность.