Автор работы: Пользователь скрыл имя, 29 Мая 2013 в 22:14, реферат
К органам кроветворения и иммунной защиты относятся красный костный мозг, тимус, селезенка, лимфатические узлы, диффузная лимфоидная ткань слизистых оболочек пищеварительной, дыхательной, мочеполовой системы, кожи. Все органы топографически разобщены, но образуют единую системы благодаря постоянной миграции и рециркуляциии клеток, в них через кровь, лимфу, тканевую жидкость.
Функции: Обеспечивают непрерывный процесс обновления клеток крови в точном соответствии с потребностями организма.
Введение………………………………………………………………………...3
1. Классификация органов кроветворения…………………………………...4
2. Возрастные особенности кроветворения…………………………………..7
Заключение…………………………………………………………………….11
Литература……………………………………………………………………..12
Содержание
Введение…………………………………………………………
1. Классификация органов кроветворения…………………………………...4
2. Возрастные особенности кроветворения…………………………………..7
Заключение……………………………………………………
Литература……………………………………………………
Введение
К органам кроветворения и иммунной защиты относятся красный костный мозг, тимус, селезенка, лимфатические узлы, диффузная лимфоидная ткань слизистых оболочек пищеварительной, дыхательной, мочеполовой системы, кожи. Все органы топографически разобщены, но образуют единую системы благодаря постоянной миграции и рециркуляциии клеток, в них через кровь, лимфу, тканевую жидкость.
Функции: Обеспечивают непрерывный процесс обновления клеток крови в точном соответствии с потребностями организма.
Поддерживают контроль целостность и индивидуальности организма, основанный на способности клеток иммунной системы отличать структурный компоненты своего организма от генетически чужеродных и уничтожать последние
Формирование комплекса защитных реакций, способных противостоять внешней среде.
В защитных реакциях организма
в целом приоритетны три
- распознавание и уничтожение различных форм инфекционного начала (бактерии, вирусы, грибы, паразиты, простейшие); продуктов их метаболизма; чужеродных белков; полисахаридов.
- надзор за собственными
клетками организма;
- Максимальное ограничение
аутоиммунных реакций (
1. Классификация органов кроветворения
По отношению к клеткам иммунной системы все органы делятся на 2 группы:
А. Центральные (первичные) - тимус, красный костный мозг. Первичные, так как здесь происходит первый антиген независимый этап дифференицировки лимфоцитов.
Б. Периферические: лимфоузлы, селезенка, диффузная ткань слизистых оболочек. Здесь происходит вторичный этап - антиген зависимая дифференцировка лимфоцитов.
Кожу относят и к центральным и к периферическим органам.
В центральных органах развитие лимфоцитов не зависит от контакта с антигеном. На этом этапе клетки приобретают специальные рецепторы - маркеры и становятся иммуннокомпетентными (способными различать разные классы чужеродных структур). Эта способность заложена в геноме, не требует присутствия антигена. Теоретически формируется способность клеток реагировать в будущем на чужеродные структуры. Один лимфоцит - один антиген.
В периферических органах образуются эффекторные лимфоциты, способные не только различать, но и уничтожать чужеродные структуры (Т-киллеры, плазмоциты, Т и В клетки памяти). Образование этих клеток зависит от потребностей организма.
Периферические органы расположены на путях возможного проникновения антигена в организм:
на пути циркуляции крови - селезенка. Эти орган ответственен за гуморальный иммунитет (выработка антител).
На пути циркулирующей лимфы - лимфоузлы. Осуществляют контроль оттока лимфы от органов. Для лимфоузлов характерен клеточный иммунитет (опухолевые клетки проходят через лимфоузлы).
На путях возможного контакта с внешней средой через воду, пищу, воздух - защитный слой слизистых оболочек, диффузная лимфоидная ткань слизистых оболочек (наиболее развита в пищеварительном тракте).
Особенности миндалин, пейеровых бляшек кишечника, аппендикса, солитарных фолликулов толстой кишки.
В них секретируются иммунноглобулины группы А. Их синтез происходит при участии эпителиальных клеток соответствующих структур (пищеварительной, дыхательной, мочеполовой систем). Иммуноглобулины группы А попадают в полость органа или на поверхность слизистой оболочки и способствуют уничтожению чужеродных структур до их попадания во внутренние Среды.
Кожа - очень важный орган,
выполняет важные защитные функции
связанные с проникновение
Развитие
Все элементы органов кроветворения и иммунной защиты (кроме тимуса) развиваются из мезенхимы с сосудами. Основу всех структур составляет ретикулярная ткань (сетчатая структура). В комплексе с развивающимися клетками крови в костном мозге - миелоидная ткань. Во всех остальных структурах - лимфоидные клетки дают лимфоидную ткань.
Тимус - эпителиальная ткань особого строения. Развивается из прехондральной пластинки (эпителий кожного типа). Эпителий 3 - 4 пар жаберных карманов плюс мезенхима с сосудами.
Красный костный мозг
Выполняет две главные функции:
образование и дифференцировка всех клеток крови на основе самоподдерживающейся популяции стволовой клетки
антигенонезависимая дифференцировка В-лимфоцитов. Источник развития - стволовая клетка.
Причины развития клеток в разных направлениях:
Специфическое микроокружение
Гемопоэтические факторы - гормоны, биологические активные вещества.
Тканевой состав и микроокружение для развивающейся гемопоэтической клетки:
Ячейки губчатого вещества пластинчатой костной ткани
Ретикулярная ткань
Элементы макрофагической системы
Специализированные формы жировой ткани
Специализированный участок микроциркуляторного русла.
Ячейки костной ткани - морфофункциональная единица красного костного мозга. Стенка ячейки построена из пластинчатой костной ткани и выстлана эндостом (в основе рыхлая соединительная ткань). Под ним внутрь ячейки - прослойка соединительной ткани с сосудами, вокруг которых развивается ретикулярная ткань.
Костная ткань обеспечивает кровоснабжение костного мозга, в том числе микроэлементами и регуляторными веществами, которые образуются в костной ткани, имея жесткую конструкцию, костная ткань ограничивает объем мозговой полости, препятствует безграничному росту мозговой ткани контроль количества костного мозга в организме
Макрофагическая система. В костном мозге локализуется специальные макрофаги мигрирующие из селезенки. Они содержат железо в виде белка - ферритина. Каждая молекула вещества содержит примерно 4000 атомов железа. Макрофаги индуцируют вокруг себя образования эритробластических островков, являясь индукторами эритропоэза.
Жировая ткань лежит отдельными островками составляет массу желтого костного мозга. Имеет специфический химический состав. Этот жир не утилизируется даже при голодании. Жировая ткань создает в костномозговой полости давление необходимое для поддержания деятельности синусоидов. Жировая ткань участвует в регуляции объема кроветворных тканей в костном мозге в зависимости от потребностей организма.
2. Возрастные особенности кроветворения
Красный костный мозг в пренатальном периоде развития присутствует во всех костях и окружен эндостом, выстилающим костные полости. Лишь к концу гестации начинают появляться в костном мозге конечностей жировые клетки. После рождения в отдельных частях скелета красный костный мозг заменяется желтым.
В процессе роста изменяется соотношение красного и желтого костного мозга. С возрастом увеличивается и масса различных кровяных клеток в костном мозге.
Состав периферической крови в первые дни после рождения претерпевает значительные изменения.
Сразу же после рождения красная кровь новорожденных характеризуется повышенным содержанием гемоглобина и большим количеством эритроцитов. В среднем сразу после рождения содержание гемоглобина равно 210 г/л (колебания 180—240 г/л) и эритроцитов — 6*10 12/л (колебания 7,2*10 12/л — 5,38*10 12/л).
Через несколько часов после рождения содержание эритроцитов и гемоглобина увеличивается за счет плацентарной трансфузии и гемоконцентрации, а затем с конца первых — начала вторых суток жизни происходит снижение содержания гемоглобина (наибольшее — к 10-му дню жизни), эритроцитов (к 5—7-му дню).
Красная кровь новорожденных отличается от крови детей более старших возрастов не только в количественном, но и в качественном отношении.
Для крови новорожденного прежде всего характерен отчетливый анизоцитоз, отмечаемый в течение 5—7 дней, и макроцитоз, т. е. несколько больший в первые дни жизни диаметр эритроцитов, чем в более позднем возрасте.
Кровь новорожденных содержит много молодых еще не совсем зрелых форм эритроцитов, указывающих на активно протекающие процессы эритропоэза.
В течение первых часов жизни количество ретикулоцитов — предшественников эритроцитов — колеблется от 8—13% до 42%. Но кривая ретикулоцитоза, давая максимальный подъем впервые 24—48 ч жизни, в дальнейшем начинает быстро понижаться и между 5-м и 7-м днями жизни доходит до минимальных цифр.
Кроме этих молодых форм эритроцитов, в крови новорожденных как вполне нормальное явление встречаются ядросодержащие формы эритроцитов, чаще нормоциты и эритробласты. В заметном количестве их удается обнаружить только в течение нескольких первых дней жизни, а затем они встречаются в крови в единичном виде.
Наличие большого числа эритроцитов, повышенное количество гемоглобина, присутствие большого количества молодых незрелых форм эритроцитов в периферической крови в первые дни жизни свидетельствуют об интенсивном эритропоэзе как реакции на недостаточность снабжения плода кислородом в период внутриутробного развития, и в родах.
Эритропоэз у детей при рождении составляет около 4*10 12/л в сутки, что в 5 раз выше, чем у детей старше года и взрослых.
После рождения в связи с установлением внешнего дыхания гипоксия сменяется гипероксией. Это вызывает снижение выработки эритропоэтинов, в значительной степени подавляется эритропоэз и начинается падение количества эритроцитов и гемоглобина.
По литературным данным, эритроциты, продуцированные внутриутробно, обладают укороченной длительностью жизни по сравнению со взрослыми и детьми более старшего возраста и более склонны к гемолизу.
Длительность жизни эритроцитов у новорожденных в первые дни жизни составляет 12 дней, что в 5—6 раз меньше средне-нормальной длительности жизни эритроцитов детей старше года и взрослых.
Имеются и отличия в количестве лейкоцитов. В периферической крови в первые дни жизни после рождения число лейкоцитов до 5-го дня жизни превышает 18-20*109/л, причем нейтрофилы составляют 60-70 % всех клеток белой крови.
Лейкоцитарная формула сдвинута влево за счет большого содержания палочкоядерных и в меньшей степени метамиелоцитов (юных). Могут обнаруживаться и единичные миелоциты.
Значительные изменения претерпевает лейкоцитарная формула, что выражается в падении числа нейтрофилов и увеличении количества лимфоцитов.
На 5-й день жизни их число сравнивается (так называемый первый перекрест), составляя около 40-44% в формуле белой крови. Затем происходит дальнейшее возрастание числа лимфоцитов (к 10-му дню до 55—60 %) на фоне снижения количества нейтрофилов (приблизительно 30 %).
Постепенно исчезает сдвиг формулы крови влево. При этом из крови полностью исчезают миелоциты, снижается число метамиелоцитов до 1 % и палочкоядерных — до 3°/о.
Последующие недели, месяцы и годы жизни у детей сохраняется ряд особенностей кроветворения, а баланс образования, созревания кровяных клеток и их потребление и разрушение определяют состав периферической крови детей различного возраста.
В процессе роста ребенка наибольшие изменения претерпевает лейкоцитарная формула, причем среди форменных элементов особенно значительны изменения числа нейтрофилов и лимфоцитов.
После года вновь увеличивается число нейтрофилов, а количество лимфоцитов постепенно снижается.
В возрасте 4—5 лет вновь происходит перекрест в лейкоцитарной формуле, когда число нейтрофилов и лимфоцитов вновь сравнивается.
В дальнейшем наблюдается нарастание числа нейтрофилов при снижении числа лимфоцитов.
С 12 лет лейкоцитарная формула уже мало чем отличается от таковой взрослого человека. Наряду с относительным содержанием клеток, входящих в понятие «лейкоцитарная формула», интерес представляет абсолютное их содержание в крови.
Абсолютное число нейтрофилов наибольшее у новорожденных, на первом году жизни их число становится наименьшим, а затем вновь возрастает, превышая 4*109/л в периферической крови.
Абсолютное же число лимфоцитов на протяжении первых 5 лет жизни высокое (5*109/л и более), после 5 лет их число постепенно снижается и к 12 годам не превышает 3*109/л.
Аналогично лимфоцитам происходят изменения моноцитов. Вероятно, такой параллелизм изменений лимфоцитов и моноцитов объясняется общностью их функциональных свойств, играющих роль в иммунитете.
Абсолютное число эозинофилов и базофилов практически не претерпевает существенных изменений в процессе развития ребенка.