Автор работы: Пользователь скрыл имя, 25 Ноября 2013 в 20:00, реферат
Генная инженерия – составная часть современной биотехнологии, теоретической основой ее является молекулярная биология, генетика. Суть новой технологии заключается о направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма (in vitro) с последующим внедрением созданных конструкций в живой организм. В результате достигается их включение и активность в данном организме и у его потомства. Возможности генной инженерии – генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение генно-инженерно-модифицированных (генетически модифицированных, трансгенных) организмов с новыми уникальными генетическими, биохимическими и физиологическими свойствами и признаками, делают это направление стратегическим.
Введение
Историческая справка
Задачи и методы генной инженерии
Основные направления
Генетически модифицированные животные
Применение в научных исследованиях
Биобезопасность генно-инженерной деятельности
Генная инженерия в медицине
Содержание
Введение
Генная инженерия (генетическая инженерия) – совокупность методов и технологий, в том числе технологий получения рекомбинантных рибонуклеиновых и дезоксирибонуклеиновых кислот, по выделению генов из организма, осуществлению манипуляций с генами и введению их в другие организмы.
Генная инженерия
– составная часть современной
биотехнологии, теоретической основой
ее является молекулярная биология, генетика.
Суть новой технологии заключается
о направленном, по заранее заданной
программе конструировании
С точки зрения методологии генная инженерия сочетает в себе фундаментальные принципы (генетика, клеточная теория, молекулярная биология, системная биология), достижения самых современных постгеномных наук: геномики, метаболомики, протеомики с реальными достижениями в прикладных направлениях: биомедицина, агробиотехнология, биоэнергетика, биофармакология, биоиндустрия и т.д.
Генная инженерия относится (наряду с биотехнологией, генетикой, молекулярной биологией, и рядом других наук о жизни) к сфере естественных наук.
Историческая справка
Генная инженерия
появилась благодаря работам
многих исследователей в разных отраслях
биохимии и молекулярной генетики. В 1953 году Дж. Уотсон и Ф. Крик
создали двуспиральную модель ДНК, на
рубеже 50 – 60-х годов 20 века были выяснены
свойства генетического кода, а к концу
60-х годов его универсальность была подтверждена
экспериментально. Шло интенсивное развитие
молекулярной генетики, объектами которой
стали E.coli, ее вирусы и плазмиды. Были разработаны
методы выделения высокоочищенных препаратов
неповрежденных молекул ДНК, плазмид и
вирусов. ДНК вирусов и плазмид вводили
в клетки в биологически активной форме,
обеспечивая ее репликацию и экспрессию
соответствующих генов. В 1970 году Г.Смитом
был впервые выделен ряд ферментов – рестриктаз,
пригодных для генно-инженерных целей.
Г.Смит установил, что полученный из бактерий
очищенный фермент HindII сохраняет способность
разрезать молекулы нуклеиновых кислот
(нуклеазная активность), характерную
для живых бактерий. Комбинирование ДНК-рестриктаз
(для разрезания молекул ДНК на определенные
фрагменты) и выделенных еще в 1967 г. ферментов
– ДНК-лигаз (для «сшивания» фрагментов
в произвольной последовательности) по
праву можно считать центральным звеном
в технологии генной инженерии.
Датой рождения генной инженерии можно
считать 1972 год, когда П. Берг, С. Коэн, Х.
Бойер с сотрудниками (Стенфордский университет)
создали первую рекомбинантную ДНК, содержавшую
фрагменты ДНК вируса SV40, бактериофага
и E. Coli.
Таким образом,
к началу 70-х годов были сформулированы
основные принципы функционирования нуклеиновых
кислот и белков в живом организме
и созданы теоретические
Задачи и методы генной инженерии
Хорошо известно, что традиционная селекция имеет целый ряд ограничений, которые препятствуют получению новых пород животных, сортов растений или рас практически ценных микроорганизмов:
1. отсутствие
рекомбинации у неродственных
видов. Между видами
2. невозможность управлять процессом
рекомбинации в организме извне. Отсутствие гомологии между
хромосомами приводит к неспособности
сближаться и обмениваться отдельными
участками (и генами) в процессе образования
половых клеток. В результате становится
невозможным перенос нужных генов и обеспечение
оптимального сочетания в новом организме
генов, полученных от разных родительских
форм;
3. невозможность точно задать признаки
и свойства потомства, т.к. процесс рекомбинации
– статистический.
Природные механизмы, стоящие на страже чистоты и стабильности генома организма, практически невозможно преодолеть методами классической селекции.
Технология
получения генетически
Технология включает несколько этапов создания ГМО:
1. Получение
изолированного гена.
2. Введение гена в вектор для
встраивания в организм.
3. Перенос вектора с конструкцией в модифицируемый
организм-рецепиент.
4. Молекулярное клонирование.
5. Отбор ГМО.
Первый этап – синтез, выделение и идентификация целевых фрагментов ДНК или РНК и регуляторных элементов очень хорошо разработан и автоматизирован. Изолированный ген может быть также получен из фаговой библиотеки.
Второй этап – создание in vitro (в пробирке) генетической конструкции (трансгена), которая содержит один или несколько фрагментов ДНК (кодирующих последовательность аминокислот белков) в совокупности с регуляторными элементами (последние обеспечивают активность трансгенов в организме). Далее трансгены встраивают в ДНК вектора для клонирования, используя инструментарий генной инженерии – рестриктазы и лигазы. За открытие рестриктаз Вернер Арбер, Даниел Натанс и Хамилтон Смит были удостоены Нобелевской премии (1978 г.). Как правило, в качестве вектора используют плазмиды – небольшие кольцевые молекулы ДНК бактериального происхождения.
Следующий этап – собственно «генетическая модификация» (трансформация), т.е. перенос конструкции «вектор – встроенная ДНК» в отдельные живые клетки. Введение готового гена в наследственный аппарат клеток растений и животных представляет собой сложную задачу, которая была решена после изучения особенностей внедрения чужеродной ДНК (вируса или бактерии) в генетический аппарат клетки. Процесс трансфекции был использован как принцип введения генетического материала в клетку.
Если трансформация прошла успешно, то после эффективной репликации из одной трансформированной клетки возникает множество дочерних клеток, содержащих искусственно созданную генетическую конструкцию. Основой для появления у организма нового признака служит биосинтез новых для организма белков – продуктов трансгена, например, растений – устойчивости к засухе или насекомым-вредителям у ГМ растений.
Для одноклеточных организмов процесс генетической модификации ограничивается встраиванием рекомбинантной плазмиды с последующим отбором модифицированных потомков (клонов). Для высших многоклеточных организмов, например, растений, то обязательным является включение конструкции в ДНК хромосом или клеточных органелл (хлоропластов, митохондрий) с последующей регенерацией целого растения из отдельной изолированной клетки на питательных средах. В случае животных, клетки с измененным генотипом вводят в бластоциды суррогатной матери. Первые ГМ растения были получены в 1982 году учеными из Института растениеводства в Кельне и компании Monsanto.
Основные направления
Постгеномная эра в первой декаде XXI-ого века подняла на новый уровень развитие генной инженерии. Так называемый Кельнский Протокол «На пути к биоэкономике, основанной на знаниях», определил биоэкономику как «преобразование знаний наук о жизни в новую, устойчивую, экологически эффективную и конкурентоспособную продукцию». Дорожная карта генной инженерии содержит целый ряд направлений: генотерапия, биоиндустрия, технологии, основанные на стволовых клетках животных, ГМ растения, ГМ животные и т.д.
Генетически модифицированные животные
Клетки животных существенно отличаются от бактериальных по своей способности поглощать чужеродную ДНК, поэтому методы и способы способы введения генов в эмбриональные клетки млекопитающих, мух и рыб остаются в центре внимания генных инженеров.
Наиболее изученное в генетическом отношении млекопитающее – мыши. Первый успех относится к 1980 году, когда Д. Гордон с сотрудниками продемонстрировал возможность введения и интеграции чужеродной ДНК в геном мышей. Интеграция была стабильной и сохранялась у потомства. Трансформацию производят микроинъекцией клонированных генов в один или оба пронуклеуса (ядра) только что эмбриона на стадии одной клетки (зиготы). Чаще выбирают мужской пронуклеус, привнесенный сперматозоидом, так как его размеры больше. После инъекции яйцеклетку немедленно имплантируют в яйцевод приемной матери, или дают возможность развиваться в культуре до стадии бластоцисты, после чего имплантируют в матку.
Таким образом были инъецированы гены интерферона и инсулина человека, ген ?-глобина кролика, ген тимидинкиназы вируса простого герпеса и кДНК вируса лейкемии мышей. Число молекул, вводимое за одну инъекцию, колеблется от 100 до 300 000, а их размер – от 5 до 50 кб. Выживает обычно 10 – 30% яйцеклеток, а доля мышей, родившихся из трансформированных яйцеклеток варьирует от нескольких до 40%. Таким образом, реальная эффективность составляет около 10%.
Таким методом получены генно-инженерные крысы, кролики, овцы, свиньи, козы, телята и другие млекопитающие. В нашей стране получены свиньи, несущие ген соматотропина. Они не отличались по темпам роста от нормальных животных, но изменение обмена веществ сказалось на содержании жира. У таких животных ингибировались процессы липогенеза и активировался синтез белка. К изменению обмена веществ приводило и встраивание генов инсулиноподобного фактора. ГМ свиньи были созданы для изучения цепочки биохимических превращений гормона, а побочным эффектом явилось укрепление иммунной системы.
Самая мощная белоксинтезирующая система находится в клетках молочной железы. Если поставить гены чужих белков под контроль казеинового промотора, то экспрессия этих генов будет мощной и стабильной, а белок будет накапливаться в молоке. С помощью животных-биореакторов (трансгенные коровы) уже получено молоко, в котором содержится человеческий белок лактоферрин. Этот белок планируется применять для профилактики гастроэнтерологических заболеваний у людей с низкой иммунорезистентностью: больные СПИДом, недоношенные младенцы, больные раком, прошедшие радиотерапию.
Важное направление
трансгеноза – получение
Применение в научных исследованиях
Нокаут гена (gene knockout) – техника удаления одного или большего количества генов, что позволяет исследовать функции гена. Для получения нокаутных мышей полученную генно-инженерную конструкцию вводят в эмбриональные стволовые клетки, где конструкция подвергается соматической рекомбинации и замещает нормальный ген, а измененные клетки имплантируют в бластоцист суррогатной матери. Сходным способом получают нокаут у растений и микроорганизмов.
Искусственная экспрессия – добавление в организм гена, которого у него ранее не было, также с целями изучения функции генов. Визуализация продуктов генов – используется для изучения локализации продукта гена. Замещение нормального гена на сконструрованный ген, слитый с репортёрным элементом, (например, с геном зелёного флуоресцентного белка) обеспечивает визуализацию продукта генной модификации.
Исследование механизма экспрессии. Небольшой участок ДНК, расположенный перед кодирующей областью (промотор) и служащий для связывания факторов транскрипции, вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP, катализирующий легко обнаруживаемую реакцию. Кроме того, что функционирование промотора в тех или иных тканях в тот или иной момент становится хорошо заметным, такие эксперименты позволяют исследовать структуру промотора, убирая или добавляя к нему фрагменты ДНК, а также искусственно усиливать экспрессию генов.
Биобезопасность генно-инженерной деятельности
Еще в 1975 г. ученые всего мира на Асиломарской конференции подняли важнейший вопрос: не окажет ли появление ГМО потенциально негативного воздействия на биологическое разнообразие? С этого момента одновременно с бурным развитием генной инженерии стало развиваться новое направление — биобезопасность. Главная ее задача — оценить не несет ли использование ГМО нежелательное воздействие на окружающую среду, здоровье человека и животных, а главная цель — открыть путь к использованию достижений современной биотехнологии, гарантируя при этом безопасность.
Стратегия биобезопасности основывается на научном исследовании особенностей ГМО, опыте обращения с ним, а также информации о его предполагаемом использовании и окружающей среде, в которую он будет интродуцирован. Совместными многолетними усилиями международных организаций (ЮНЕП, ВОЗ, ОЭСР), экспертов из разных стран, в т. ч. России, были разработаны базовые понятия и процедуры: биологическая безопасность, биологическая опасность, риск, оценка рисков. Только после того, как полный цикл проверок будет успешно осуществлен, готовится научное заключение о биобезопасности ГМО. В 2005 г. ВОЗ опубликовало доклад, согласно которому употребление зарегистрированных в качестве пищи ГМ растений также безопасно, как их традиционных аналогов.