Автор работы: Пользователь скрыл имя, 02 Сентября 2013 в 20:18, контрольная работа
1.Фармакодинамика лекарственных веществ. Основные принципы действия лекарственных веществ. Специфические рецепторы. Агонисты и антогонисты. Практическое значение. Примеры.
Фармакодинамика - один из основных разделов фармакологии, изyчaющий совокупность эффектов, вызываемых лекарственными средствами, а также механизмы, лежащие в основе их действия
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
НОВОСИБИРСКИЙ
ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ
ФЕДЕРАЛЬНОГО АГЕНТСТВА ПО ЗДРАВООХРАНЕНИЮ
И СОЦИАЛЬНОМУ РАЗВИТИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ
(ГОУ ВПО НГМУ РОСЗДРАВА)
Кафедра фармакологии
Контрольная работа №1
Задание №5
Выполнил:
студент фармацевтического
Ковалик А.А.
Проверил:
преподаватель кафедры
Новосибирск 2011г.
1.Фармакодинамика
Фармакодинамика - один из основных разделов фармакологии, изyчaющий совокупность эффектов, вызываемых лекарственными средствами, а также механизмы, лежащие в основе их действия.
Основные принципы действия лекарственных веществ.
Периферическое действие обусловлено влиянием ЛВ на периферический отдел нервной системы или органы и ткани. Курареподобные средства (миорелаксанты периферического действия) расслабляют скелетные мышцы, блокируя передачу возбуждения в нервно-мышечных синапсах. Для веществ с основным центральным действием периферические эффекты, как правило, являются побочными. Например, хлорпромазин вызывает расширение сосудов и снижение давления (побочное действие), блокируя периферические α-адренорецепторы.
Специфические рецепторы. Агонисты и антигонисты.
Большинство лекарственных веществ взаимодействует с функционально значимыми макромолекулами или их фрагментами, которые обозначают как специфические рецепторы. Специфические рецепторы могут находиться в клеточной мембране (холинорецепторы, адренорецепторы, дофаминовые рецепторы, ГАМК-рецепторы, бензодиазепиновые рецепторы и др.), в цитоплазме клеток (рецепторы стероидных гормонов), клеточных ядрах (рецепторы ряда противоопухолевых средств). Кроме того, в качестве специфических рецепторов рассматриваются активные центры ряда ферментов (ацетилхолинэстеразы, моноаминоксидазы и др.). Некоторые специфические рецепторы (например, н-холинорецепторы скелетных мышц) выделены в изолированном виде и установлено их химическое строение.
Взаимодействие лекарственных
веществ со специфическими рецепторами
может осуществляться за счет различных
химических связей, имеющих неодинаковую
прочность. Такого рода связи обеспечивают
обычно временное, обратимое соединение
лекарственных веществ с
Прочность связывания вещества с рецепторами обозначают термином «аффинитет». Вещества, действующие на одни и те же рецепторы, могут обладать по отношению к ним разным аффинитетом. При этом вещества с более высоким аффинитетом могут вытеснять из соединения с рецепторами вещества с меньшим аффинитетом.
Способность лекарственных веществ, вследствие их взаимодействия со специфическими рецепторами, вызывать биохимические или физиологические реакции обозначают как их внутреннюю активность. Максимальный эффект может быть достигнут при «оккупации» веществом лишь части специфических рецепторов.
Вещества, обладающие аффинитетом и внутренней активностью, называют агонистами. При этом вещества с высокой внутренней активностью называют полными агонистами, а вещества с низкой внутренней активностью — частичными (парциальными) агонистами. Вещества, обладающие аффинитетом, но не имеющие внутренней активности и препятствующие действию агонистов, называют антагонистами. Фармакологическое действие антагонистов проявляется в ослаблении или устранении эффектов агонистов. Вещества могут действовать как агонисты в отношении одних подтипов рецепторов и как антагонисты в отношении других. Такие вещества обозначают как агонисты-антагонисты.
В случае, когда места связывания агониста и антагониста одни и те же и блокирующее действие антагониста полностью устраняется при повышении количества агониста, антагонизм этих веществ называют конкурентным. При различии мест связывания агониста и антагониста их взаимодействие определяют как неконкурентный антагонизм.
Стимулируя специфические
В отдельных случаях
Практическое значение. Примеры.
К примеру, дофамин является эндогенным агонистом дофаминовых рецепторов.
Пример частичных агонистов: пиндолол (β-блокатор с внутренней симпатомиметической активностью).
Промежуточным звеном между бета-адреномиметиками и бета-адреноблокаторами являются так называемые бета-адреноблокаторы с внутренней симпатомиметической активностью. Это частичные агонисты β-адренорецепторов. То есть, они обладают слабым стимулирующим влиянием на β-адренорецепторы, в разы меньшим, чем обычные агонисты. Применяют их в основном для лечения артериальной гипертонии и аритмий у больных с брадикардией, так как наличие собственного симпатомиметического действия не позволяет этой группе препаратов значительно снизить частоту сердечных сокращений.
Атропин - природный алкалоид, являющийся конкурентным антагонистом мускариновых холинэргических рецепторов.
Основные эффекты:
учащение ритма, а иногда
тахикардия, угнетение секреции
слюнных желез (приводит к
Побочные эффекты:
Поскольку атропин является
парасимпатическим
Применение:
В анестезиологической практике перед наркозом и операцией и во время операции для предупреждения бронхиоло- и ларингоспазма, ограничения секреции слюнных и бронхиальных желез и уменьшения других рефлекторных реакций и побочных явлений, связанных с возбуждением блуждающего нерва; при язвенной болезни желудка и двенадцатиперстной кишки, пилороспазме, холецистите, желчнокаменной болезни, при спазмах кишечника и мочевых путей, бронхиальной астме, для уменьшения секреции слюнных, желудочных и бронхиальных желез, при брадикардии, развившейся в результате повышения тонуса блуждающего нерва и др.
2. N-холиномиметики. Локализация N-холинорецепторов, фунуциональные особенности. Представители N-холиномиметиков. Механизм действия. Основные эффекты, вызываемые N-холиномиметиками. Показания к применению.
N-холинорецепторы - это холинорецепторы вегетативных ганглиев . N-холинорецепторы чувствительны к никотину и блокируются ганглиоблокаторами.
К этой группе относятся алколоиды никотин, лобелин, цитизин. Они действуют преимущественно на N-холинорецепторы нейронального типа, локализованные на нейронах симпатических и парасимпатических ганглиев, хромаффинных клетках мозгового вещества надпочечников, в каротидных клубочках и в ЦНС.
N-холинорецепторы относят к мембранным рецепторам, связанным с ионными каналами. По структуре это – гликопротеины, состоящие из нескольких субъединиц. Например, N-холинорецептор нервно-мышечных синапсов включает 5 белковых субъединиц (α, α, β, δ), которые окружают ионный канал. При связывании двух молекул ацетилхолина с α-субъединицами происходит открытие Na+-канала. Ионы Na+ входят в клетку, что приводит к деполяризации постсинаптической мембраны концевой пластинки скелетных мышц и мышечному сокращению.
Никотин – алколоид, содержится в листьях табака (Nicotiana tabacum, Nicotiana ristica). В основном никотин попадает в организм человека во время курения табака. Он быстро всасывается со слизистых оболочек дыхательных путей и проникает через поврежденную кожу.
Никотин действует на никотиновые ацетилхолиновые рецепторы. В низких концентрациях он увеличивает активность этих рецепторов, что ведёт к увеличению количества стимулирующего гормона адреналина (эпинефрина). Выброс адреналина приводит к ускорению сердцебиения, увеличению кровяного давления и учащению дыхания, а также к большему уровню глюкозы в крови.
Симпатическая нервная система, действуя
через чревные нервы на мозговое
вещество надпочечника, стимулирует
выброс адреналина. Ацетилхолин, вырабатываемый
преганглионарными
Стимуляция парасимпатических ганглиев вызывает повышение тонуса и моторики кишечника и повышение секреции экзокринных желез. Большие дозы никотина действуют угнетающее на организм.
Никотин, являясь третичным амином, обладает высокой липофильностью. Он быстро проникает через ГЭБ в ткани и мозг. Никотин увеличивает уровень дофамина в путях центров удовольствия в мозге. Выявлено, что курение табака подавляет моноаминоксидазу — фермент, отвечающий за расщепление моноаминных нейромедиаторов (например, дофамина) в мозге. Большие дозы никотина приводят к угнетению дыхания вплоть до его остановки, вызывают тремор, судороги, тошноту и рвоту.