Автор работы: Пользователь скрыл имя, 20 Апреля 2014 в 20:49, реферат
Для того, чтобы понять сложный специфический процесс болезни, надо начинать его анализ с типовых, неспецифических нарушений, прежде всего, на базовом уровне- уровне клетки. Повреждение клетки является одним из основных механизмов развития многих патологических процессов, возникающих под действием физических, химических и биологических факторов. Являясь отражением собственно патологической стороны болезни, повреждение клеток в тоже время состоит из защитно- компенсаторных механизмов, направленных на ликвидацию как самого патогенного фактора, так и последствий его болезнетворного действия.
Введение
Причины повреждения клеток
Повреждение мембран и ферментов
Последствия повреждения основных клеточных органоидов
Расстройства энергетического обеспечения клетки
Генетические нарушения
Заключение
Список литературы
Государственное бюджетное образовательное учреждение
высшего профессионального образования
«Самарский государственный медицинский университет»
Министерства здравоохранения Российской Федерации
Кафедра общей и клинической патологии: патологической анатомии и патологической физиологии.
Реферат
На тему: «Общие механизмы повреждения клеток».
Самара 2013 год.
Содержание
Введение
Причины повреждения клеток
Повреждение мембран и ферментов
Последствия повреждения основных клеточных органоидов
Расстройства энергетического обеспечения клетки
Генетические нарушения
Заключение
Список литературы
ВВЕДЕНИЕ.
Для того, чтобы понять сложный специфический процесс болезни, надо начинать его анализ с типовых, неспецифических нарушений, прежде всего, на базовом уровне- уровне клетки. Повреждение клетки является одним из основных механизмов развития многих патологических процессов, возникающих под действием физических, химических и биологических факторов. Являясь отражением собственно патологической стороны болезни, повреждение клеток в тоже время состоит из защитно- компенсаторных механизмов, направленных на ликвидацию как самого патогенного фактора, так и последствий его болезнетворного действия. Интенсивное развитие морфологических, функциональных и биохимических методов исследования позволило раскрыть основные механизмы и закономерности процесса повреждения клетки на субклеточном и молекулярном уровнях и на основе этого проникнуть в сущность патогенеза многих болезней. Это и предопределяет значение данной темы в курсе изучения патологической физиологии.
ПРИЧИНЫ ПОВРЕЖДЕНИЯ КЛЕТКИ.
Повреждение клетки — результат воздействия на неё множества патогенных агентов. Причины повреждения клетки классифицируют по природе патогенных факторов, их происхождению и эффектам.
Природа повреждающего фактора может быть физической, химической и биологической.
ФИЗИЧЕСКИЕ ФАКТОРЫ ПОВРЕЖДЕНИЯ
Наиболее частыми причинами повреждения клетки физической природы являются механические, температурные, осмотические, свободнорадикальные (избыток свободных радикалов и продуктов активации липопероксидных процессов повреждают мембраны и денатурируют белки). Патогенное действие на клетку могут оказывать также ионизирующая радиация, электромагнитные факторы и другие агенты физического характера.
Механические воздействия
К механически повреждающим факторам относятся удары, растяжения (например, при перерастяжении мышечной ткани или органов), сдавление (в частности, опухолью, гематомой, рубцом, экссудатом), гравитационные перегрузки и др.
Колебания температуры
Повышение температуры среды, окружающей клетку, до 40–50 °C и выше может привести к денатурации белка, нуклеиновых кислот, декомпозиции ЛП, повышению проницаемости клеточных мембран и другим изменениям.
Значительное снижение температуры существенно замедляет или прекращает внутриклеточные метаболические процессы и может привести к кристаллизации внутриклеточной жидкости и разрывам мембран, что означает гибель клетки.
Изменения осмотического давления
Гиперосмия может развиться вследствие накопления в клетке продуктов неполного окисления органических субстратов или избытка ионов. Последнее, как правило, сопровождается поступлением в клетку воды по градиенту осмотического и онкотического давления, набуханием клетки и растяжением (вплоть до разрыва) плазмолеммы и мембран органелл.
Снижение внутриклеточного осмотического давления или повышение его во внеклеточной среде приводит к потере клеточной жидкости, сморщиванию (пикнозу) и нередко — к гибели клетки.
ХИМИЧЕСКИЕ ФАКТОРЫ ПОВРЕЖДЕНИЯ
К ним относятся органические и неорганические кислоты и щёлочи, соли тяжёлых металлов, цитотоксические соединения и многие ЛС. Повреждение клетки может возникать как при избытке, так и при дефиците одного и того же агента. Например, избыточное содержание кислорода в тканях активирует процесс свободнорадикального перекисного окисления липидов (СПОЛ), продукты которого необратимо повреждают ферменты и мембраны клеток; с другой стороны, снижение содержания кислорода приводит к нарушениям окислительных процессов, понижению образования АТФ и как следствие — к расстройствам функций клетки.
Цитотоксические соединения
Классические примеры цитотоксических соединений — ингибиторы ферментов. Так, цианиды подавляют активность цитохромоксидазы; этанол и его метаболиты ингибируют многие ферменты клетки; вещества, содержащие соли мышьяка, угнетают пируватоксидазу.
Лекарственные средства
Неправильное применение ЛС (чаще в виде передозировки) может привести к повреждению клеток.
Строфантин подавляет активность мембранной Na+,K+-АТФазы кардиомиоцитов, но его передозировка ведёт к дисбалансу внутриклеточного содержания ионов и воды.
Инсулин обеспечивает утилизацию клеткой глюкозы, но его передозировка может вызвать истощение запасов гликогена и ухудшить энергетическое обеспечение клетки.
БИОЛОГИЧЕСКИЕ ФАКТОРЫ ПОВРЕЖДЕНИЯ
К ним относят главным образом инфекционные агенты и цитотоксические факторы системы ИБН.
Инфекционные агенты
Инфекционные агенты (вирусы, риккетсии, микробы, гельминты, грибы, прионы) как сами по себе, так и в виде продуктов их жизнедеятельности или деградации вызывают расстройства функций клетки, нарушают течение в ней метаболических реакций, проницаемость или даже целостность мембран, подавляют активность клеточных ферментов.
Цитотоксические факторы
К цитотоксическим факторам относятся эндо- и экзотоксины, аутоагрессивные T-лимфоциты, в ряде случаев — АТ (например, при явлениях молекулярной мимикрии).
Эндо- и экзотоксины, а также структурные компоненты бактерий, вирусов и паразитов могут изменять антигенный состав клетки. Это приводит к появлению АТ или иммунных T-лимфоцитов, повреждающих клетки организма. В результате этого могут развиться иммунопатологические процессы (аллергия, патологическая толерантность, состояния иммунной аутоагрессии).[1,с.91-94]
Наиболее частыми причинами повреждения клетки физической природы являются механические, температурные, осмотические, свободнорадикальные (избыток свободных радикалов и продуктов активации липопероксидных процессов повреждает мембраны и денатурирует белки). Патогенное действие на клетку могут оказывать также ионизирующая радиация, электромагнитные факторы и другие агенты физического характера.
К механически повреждающим факторам относятся удары, растяжения (например, при перерастяжении мышечной ткани или органов), сдавление (в частности, опухолью, гематомой, рубцом, экссудатом), гравитационные перегрузки и др.
Повышение температуры среды, окружающей клетку, до 40-50˚С и выше может привести к денатурации белка, нуклеиновых кислот, декомпозиции липопротеинов, повышению проницаемости клеточных мембран и другим изменениям. Значительное снижение температуры существенно замедляет или прекращает внутриклеточные метаболические процессы и может привести к кристаллизации внутриклеточной жидкости и разрывам мембран, что означает гибель клетки.[4,с.66]
К химическим факторам повреждения относятся органические и неорганические кислоты и щелочи, соли тяжелых металлов, цитотоксические соединения и ЛС. Повреждение клетки может возникать как при избытке, так и при дефиците одного и того же агента. Например, избыточное содержание кислорода в тканях активирует процесс свободнорадикального перекисного окисления липидов (СПОЛ), продукты которого повреждают ферменты и мембраны клеток; с другой стороны, снижение содержания кислорода приводит к нарушениям окислительных процессов, понижению образования АТФ и как следствие – к расстройствам функций клетки.[4,с.70]
ПОВРЕЖДЕНИЕ МЕМБРАН И ФЕРМЕНТОВ
Повреждение клеточных мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также — что особенно важно — в переходе обратимых изменений в ней в необратимые.
Согласно жидкостно-мозаичной модели, мембрана клетки — жидкая динамическая система с мозаичным расположением белков и липидов. Основу мембраны составляют молекулы фосфолипидов (липидная фаза), полярные (ионные) «головки» которых направлены к водной среде, т.е. к гидрофильным поверхностям мембраны (гидрофильная зона), а неполярные части — «хвосты» — внутрь мембраны (гидрофобная зона). В фосфолипидной среде «взвешены» белковые молекулы, часть из которых полностью погружена в мембрану и пронизывает их толщу (так называемые интегральные белки), а часть расположена поверхностно (периферические белки). Периферические белки не проникают в толщу мембраны и удерживаются на её поверхности главным образом электростатическими силами.
В плоскости мембраны белки обладают латеральной подвижностью. Интегральные белки перераспределяются в мембранах в результате взаимодействия с периферическими белками, элементами цитоскелета, молекулами в мембране соседней клетки и компонентами внеклеточного матрикса. В то же время подвижность интегральных белков в мембране ограничена вследствие их взаимодействия с периферическими белками и элементами цитоскелета, а также гидрофобного связывания с липидами. Для белков–ферментов эти обстоятельства влияют на интенсивность и характер протекания катализируемых ими реакций. Кроме того, липиды мембран обеспечивают оптимальные условия для энзиматических процессов. Например, окислительное фосфорилирование требует безводной среды, что предотвращает спонтанный гидролиз АТФ.
Основные механизмы повреждения клеточных мембран приведены на рис. 4–4. Все указанные механизмы прямо или опосредованно ведут к повреждению, изменению конформации и/или кинетических свойств ферментов, многие из которых связаны с мембранами.
Свободнорадикальные реакции
Свободнорадикальные процессы и реакции СПОЛ — необходимое звено таких жизненно важных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез Пг и лейкотриенов, пролиферация и дифференцировка клеток, фагоцитоз, метаболизм катехоламинов и др. В реакции СПОЛ могут вовлекаться белки, нуклеиновые кислоты, липиды, в особенности фосфолипиды. СПОЛ важна для регуляции липидного состава биомембран и активности ферментов. Последнее является результатом как прямого действия продуктов липопероксидных реакций на ферменты, так и опосредованного — через изменение состояния мембран, с которыми ассоциированы молекулы многих ферментов.
Интенсивность СПОЛ регулируется соотношением факторов, активирующих (прооксидантов) и подавляющих (антиоксидантов) этот процесс (рис. 4–5). К числу наиболее активных прооксидантов относятся легко окисляющиеся соединения, индуцирующие появление свободных радикалов, в частности нафтохиноны, витамины A и D, восстановители — НАДФН2, НАДН2, липоевая кислота, продукты метаболизма Пг и катехоламинов.
Этапы. Процесс СПОЛ можно условно разделить на три этапа.
1) кислородная
инициация («кислородный» этап —
образование активных форм
2) генерация
свободных радикалов
3) продукция
перекисей и гидроперекисей
Активные формы кислорода
Начальным звеном СПОЛ при повреждении клетки является, как правило, образование так называемых активных форм кислорода:
• синглетного (1O2);
• супероксидного радикала (O2–);
• перекиси водорода (Н2О2);
• гидроксильного радикала (OH–).
Супероксидный радикал O2– генерируют лейкоциты (особенно интенсивно при фагоцитозе), митохондрии в процессе окислительных реакций, разные ткани при метаболической трансформации катехоламинов, синтезе Пг и других соединений.
Пероксид водорода H2О2 образуется при взаимодействии (дисмутации) радикалов O2– в цитозоле клеток и матриксе митохондрий. Этот процесс катализирует супероксиддисмутаза (СОД):
O2– + O2– + 2H+ ® H2O2 + O2
Радикал O2– и H2O2 оказывают прямое повреждающее действие. Наряду с этим, под влиянием ионов железа, присутствующих как в цитозоле, так и в биологических жидкостях, радикал O2– и H2O2 могут трансформироваться (с участием каталазы) в весьма агрессивный и обладающий высоким патогенным эффектом гидроксильный радикал OH–.
H2O2 + Fe2 + ® Fe3 + + OH + OH–;
O2– + H2O2 ® O2 + OH + OH–
Гидроксильные радикалы OH– активно вступают в реакции с органическими соединениями, главным образом липидами, а также нуклеиновыми кислотами и белками. В результате образуются другие активные радикалы и перекиси. При этом реакция может приобрести цепной лавинообразный характер (рис. 4–6). Однако, это происходит не всегда. Чрезмерной активации свободнорадикальных и перекисных реакций препятствуют факторы антиоксидантной защиты клеток.
Антиоксидантная защита клеток
В клетках протекают процессы и действуют факторы, которые ограничивают или даже прекращают свободнорадикальные и перекисные реакции, т.е. оказывают антиоксидантный эффект. Одним из таких процессов является взаимодействие радикалов и гидроперекисей липидов между собой, что ведёт к образованию «нерадикальных» соединений. Ведущую роль в системе антиоксидантной защиты клеток играют механизмы ферментной, а также неферментной природы.[1,с.99-101]