Функциональные методы исследования сердечно-сосудистой системы

Автор работы: Пользователь скрыл имя, 10 Марта 2014 в 18:21, лекция

Краткое описание

Вены определяют величину возврата крови к сердцу, систолический объем, минутный объем крови. По венам кровь движется из области более высокого давления в область более низкого. В венулах давление крови составляет 12–18 мм Нg. В венах вне грудной полости равно 5–9 мм Hg. При впадении в правое предсердие оно колеблется в зависимости от фаз дыхания: при вдохе — ниже атмосферного, при выдохе — выше на 2–5 мм Hg. Очень опасным является повреждение вен, расположенных вблизи грудной полости (например, яремных). При вдохе, когда давление в вене становится отрицательным, атмосферный воздух может проникая в полость вен вызвать воздушную эмболию. Пузырьки воздуха в крови вызовут закупорку артериол и капилляров, что может привести к летальному исходу.

Вложенные файлы: 1 файл

Zanyatie_22.doc

— 5.02 Мб (Скачать файл)

Простагландины. Это биологически активные вещества, производные арахидоновой кислоты, первоначально обнаруженные в соке предстательной железы мужчин, а затем во многих других тканях: матке, почках, сердце, желудочно-кишечном аппарате и других органах. Синтезируются наиболее активно в почках. Среди них есть вазоконстрикторы и вазодилятаторы. Влияют на миогенный тонус, сократимость миокарда, обмен Na+, Н2О в организме и др.

Калликреин–кининовая система. Два сосудорасширяющих пептида (брадикинин и каллидин — лизил-брадикинин) образуются из белков–предшественников — кининогенов — под действием протеаз, называемых калликреинами. Кинины вызывают:

–сокращение ГМК внутренних органов,

–расслабление ГМК сосудов и cнижение АД,

–увеличение проницаемости капилляров,

–увеличение кровотока в потовых и слюнных железах и экзокринной части поджелудочной железы.

Нейрогенные и гуморальные факторы во взаимосвязи поддерживают АД на нормальном уровне с небольшими физиологическими колебаниями.

Ренин-ангиотензин — альдостероновая система. При снижении АД в почках (до 100 мм Hg) возрастает продукция юкстагломерулярным аппаратом ренина. Выделение его в кровь зависит от концентрации К+, Na+ и симпатических влияний. Сам ренин вазоконстрикторным действием не обладает, однако действует на ангиотензиноген (это α2- глобулин плазмы), превращая его в малоактивный ангиотензин I (декапептид), который под действием ангиотензанпревращающего фермента плазмы (дипептидкарбоксипептидазы) превращается в мощный вазоконстриктор - ангиотензин II. Сосуды суживаются, АД повышается. Ангиотензин II стимулирует секрецию альдостерона, влияющего на водно–солевой обмен, Na+. Вода задерживаются в сосудах, объем крови возрастает, АД повышается. Таким образом, ангиотензин II действует непосредственно. Альдостерон — косвенно. Большое количество ренина начинает вырабатываться, когда у человека снижается артериальное давление, и чем меньше кровоснабжение почек, тем ренина вырабатывается больше. Факт открытия ренина объяснил причину гипертензии при заболеваниях почек (почечная гипертензия).

 

Эндотелиальные регуляторы

Эндотелиальные клетки сосудов под воздействием различных веществ и/или условий синтезируют так называемый эндогенный релаксирующий фактор (оксид азота — NO). Аминокислота L-аргинин является эндогенным источником оксида азота (NO), который влияет на тонус сосудов и кровяное давление. Расслабляющее действие на гладкомышечные клетки сосудов оказывают нитраты при образовании окиси азота в результате внутриклеточной реакции с сульфгидрильными группами. При этом стимулируется образование циклического гуанозинмонофосфата через гуанилатциклазу.

Окись азота участвует в регуляции АД на периферическом уровне за счет локального расширения сосудов, а так же на уровне ЦНС понижая симпатическую активность.

Мощным сосудорасширяющим местным действием обладает эндотелиальный расслабляющий фактор, который идентичен окиси азота. Снижаются тонус вен, венозный возврат, давление, наполнение кровью левого желудочка и сосудов малого круга кровообращения.

Нейроэндокринные механизмы регуляции системного артериального давления и объёма циркулирующей крови

В зависимости от скорости развития адаптивных процессов все механизмы регуляции гемодинамики делятся на:

срочные (кратковременные);

промежуточные (по времени);

длительно действующие.

Срочные механизмы поддержания артериального давления включаются через секунды и продолжают регулировать артериальное давление в течение примерно 10 минут. Рассмотрим работу этих механизмов на примере восстановления артериального давления после кровопотери. В этом случае происходит:

–рефлекторный спазм сосудов с хемо- и барорецепторов рефлексогенных сосудистых зон;

–рефлекторное сужение сосудов в ответ на ишемию мозга;

–выход крови из депо: селезёнки, печени, лёгких и подкожных сосудов.

Эти нервно-рефлекторные влияния дополняются действием гормонов: увеличивается секреция катехоламинов из надпочечников и с большим латентным периодом вазопрессина из нейрогипофиза.

Если срочные механизмы не справляются с регуляцией артериального давления (в основном по причине адаптации барорецепторов), то включаются промежуточные по времени регуляторные механизмы, которые действуют несколько часов. Они поддерживают уровень артериального давления с помощью:

–изменения транскапиллярного обмена;

–релаксации напряжения сосудистой стенки;

–ренин-ангиотензиновой системы.

Например, при повышении артериального давления увеличивается давление крови в капиллярах, вследствие чего увеличивается диффузия жидкости в интерстициальное пространство. В результате этого объём циркулирующей крови уменьшается и артериальное давление снижается. Параллельно с изменением транскапиллярного обмена происходит расслабление сосудистой стенки (релаксация напряжения) в основном вен. Вены растягиваются, кровь в них депонируется, объём циркулирующей крови уменьшается и артериальное давление снижается.

При понижении давления примерно через 20 минут включается ренин-ангиотензиновая система, в результате чего увеличивается образование ангиотензина II, который является мощным сосудосуживающим фактором, действующим на миоциты артерий, артериол и венул. Действие ренин-ангиотензиновой системы достигает максимума примерно через 20 минут и продолжается в течение длительного времени, ослабевая лишь незначительно.

Если уровень артериального давления остаётся сниженным, то на высоте максимального выделения ангиотензина II начинается выброс альдостерона, и включаются длительно действующие механизмы регуляции артериального давления.

Длительно действующие механизмы включаются через часы и действуют в течение нескольких суток. Эти механизмы влияют, главным образом, на соотношение между объёмом циркулирующей крови и ёмкостью сосудов. К ним относятся:

–почечная система контроля за объёмом жидкости;

–система вазопрессина;

–система альдостерона.

Почечная система контроля жидкости при повышенном артериальном давлении функционирует следующим образом. Повышенное давление увеличивает выведение жидкости почками, в результате чего уменьшается объём криви, что приводит к (снижению венозного возврата и, соответственно, снижению сердечного выброса. В результате артериальное давление снижается.

При понижении артериального давления происходят обратные процессы: выведение жидкости почками уменьшается, объём крови возрастает, венозный возврат и сердечный выброс увеличиваются и артериальное давление повышается.

Чувствительность почечной регуляторной системы увеличивается вазопрессином (антидиуретическим гормоном, АДГ). При повышении объёма циркулирующей крови импульсация от рецепторов предсердий возрастает, в результате чего через примерно 15 минут выделение вазопрессина снижается, что приводит к увеличению выделения жидкости почками (рефлекс Гауэра-Генри).

При падении артериального давления происходят обратные процессы. Разделить почечную регуляцию объёма жидкости и регуляцию объёма жидкости с участием АДГ практически невозможно, так как действие АДГ дополняет регуляцию объёма жидкости почками.

Альдостерон увеличивает канальцевую реабсорбцию натрия, а также секрецию К+ и Н+. За натрием по закону осмоса реабсорбируется вода. Вследствие этого в организме повышается содержание натрия и внеклеточной жидкости. Одновременно альдостерон повышает чувствительность миоцитов сосудов к вазоконстрикторным влияниям ангиотензина II и его прессорное действие усиливается.

Циркуляторные эффекты альдостерона начинают проявляться спустя несколько часов и достигают максимума через несколько дней.

Функциональная система, поддерживающая оптимальный уровень АД

 

 

Функциональные системы саморегуляции – широкое функциональное объединение различно локализованных  структур на основе общего полезного приспособительного результата. Центральным системообразующим фактором каждой функциональной системы является результат её деятельности, определяющий в организме нормальные условия течения метаболических  процессов.

Повышение  артериального давления воспринимается специальными образованиями, расположенными в стенках сосудов, – баро-, или прессорецепторами, возбуждение которых по нервному каналу обратной связи поступает в виде потоков нервных импульсов в аппарат центральной регуляции – сосудодвигательный центр.

Состояние сосудодвигательного центра продолговатого мозга координируется высшими отделами вегетативной саморегуляции, к которым относятся структуры лимбико-гипоталамо-ретикулярного комплекса. Эфферентные посылки интегрированных команд из головного мозга приводят: к перераспределению крови, выключению из общей циркуляции некоторого объема крови путем задержки ее в депо, изменению процессов кроветворения, массы крови, просвета артериол и скорости кровотока, что приводит к соответствию АД запросам метаболизма. Роль гормональной системы, например, в случае «выброса» адреналина с сосудистое русло, сводится к модуляции работы отдельных звеньев функциональной системы.

Именно результат деятельности системы, объединяя отдельные структурные системы регуляции организма в функциональную, определяет и направляет её динамичную работу на приведение к интересующим организм на данный момент времени параметрам полезного приспособительного результата – артериального давления.

Физиология лимфы

Лимфатическая система является составной частью сосудистой и представляет собой как бы добавочное русло венозной системы, в тесной связи с которой она развивается и имеет сходные черты строения (наличие клапанов, направление тока лимфы от тканей к сердцу).

Строение лимфатической системы

1.Она начинается с  разветвленной сети замкнутых капилляров, стенки которых обладают высокой проницаемостью и способностью всасывать коллоидные растворы и взвеси.

2. Внутриорганные сплетения посткапилляров и мелкие, имеющие клапаны лимфатические сосуды

3. Экстраорганные отводящие лимфатические сосуды.

4. Лимфатические стволы

5. Лимфатические протоки – правый лимфатический и грудной

Вся лимфа из нижней части туловища собирается в грудной проток и изливается в венозную систему в области угла внутренней яремной вены и подключичной вены.

Лимфа из левой половины головы, левой руки и части грудной клетки поступает в грудной проток перед его впадением в венозное русло.

Лимфа из правой половины шеи и головы, правой руки и правой половины грудной клетки собирается в правый лимфатический проток.

В отличие от кровеносных сосудов, по которым происходит как приток крови к тканям тела, так и ее отток от них, лимфатические сосуды служат лишь для оттока лимфы, т.е. возвращают в кровь поступившую в ткани жидкость. Лимфатические сосуды являются как бы дренажной системой, удаляющей избыток находящейся в органах тканевой, или интерстициальной, жидкости.

Важно, что оттекающая от тканей лимфа по пути к венам проходит через биологические фильтры — лимфатические узлы. Здесь задерживаются и не попадают в кровоток некоторые чужеродные частицы, например бактерии. Они поступают из тканей в лимфатические, а не в кровеносные капилляры вследствие более высокой проницаемости стенок первых по сравнению со вторыми.

Таким образом, лимфатическая система является своеобразной дренажной системой, через которую избыток жидкости в тканях удаляется и поступает опять в кровь.

Основные функции лимфатической системы:

  • Поддержание постоянства и состава тканевой жидкости.
  • Обеспечение гуморальной связи органов, тканей и крови через посредство тканевой жидкости.
  • Транспорт питательных веществ (например, липидов) от кишечника в венозную систему.
  • Участие в иммунологических процессах. Доставка из лимфоидных органов клеток плазматического ряда, Ig, лимфоцитов, фильтрационная деятельность синусов лимфоузлов.
  • Дренажная. Возврат белков, воды и электролитов из межклеточного пространства в кровь.
  • Детоксикационная. Обеспечивается переход из межклеточного пространства патологически измененных белков, токсинов и клеток с последующим обезвреживанием их в лимфоузлах.
  • Транспорт клеток опухолей

Сетью лимфатических капилляров пронизаны все ткани кроме костной, нервной и поверхностных слоев кожи.

В лимфатических сосудах имеются клапаны. Первый клапан локализуется в месте слияния нескольких капилляров и начале образования лимфатического сосуда. Клапаны имеют полулунную форму.

Состав лимфы. Содержит лимфоциты, белки, липиды, аминокислоты, глюкозу, электролиты, факторы свертывания крови, антитела, ферменты. После голодания или приема нежирной пищи лимфа представляет собой почти прозрачную бесцветную жидкость. После приема жирной пищи лимфа приобретает молочно - белый цвет. Она непрозрачна (эмульгированные жиры, всосавшиеся из кишечника).

Удельный вес (относительная плотность) – 1,012-1,023; рН - 7,35-9,0, содержание белков - в 3-4 раза меньше, чем в плазме. Вязкость (1,0-1,3) меньше по сравнению с плазмой. Содержится фибриноген (способна свертываться, но сгусток рыхлый). Есть небольшое количество лейкоцитов.

Информация о работе Функциональные методы исследования сердечно-сосудистой системы