Автор работы: Пользователь скрыл имя, 12 Января 2015 в 18:04, реферат
Керамическая плитка, керамические горшки, вазы, тарелки, посуда – мы все время слышим о таком материале, как керамика. Им присущи многие замечательные свойства. Керамика прекрасно выдерживает высокие температуры. При этом она обладает хорошими электрическими характеристиками при хорошей механической прочности. Большинство керамических материалов не поглощают влагу. На научном языке это свойство называют гигроскопичностью.
Введение……………………………………………………………………………….…3
1. От керамики к нанокерамике…………………………………………………………4
2. Конструкционная керамика………………………………………………………..…8
3. Функциональная керамика ……………………………………………………….…10
3.1Оптически прозрачная керамика……………………………………….....…12
Заключение ……………………………………………………………………….…….17
Список литературы………………
Из многочисленного ряда функциональных материалов широкое применение находит пьезосегнетоэлектрическая керамика.
Широко используемая в радиоэлектронике, гидроакустике и бытовой технике сегнето- и пьезоэлектрическая керамика, благодаря своей уникальной способности реагировать на любое физическое воздействие, является особым классом специальных керамических материалов, для изготовления которых применяют различные технологические процессы.
Исходным сырьём для получения пьезокерамики служат искусственно синтезированные химические соединения, являющиеся сегнетоэлектриками. Наиболее распространены в настоящее время типы сегнетоэлектрической керамики — однофазные керамические материалы на основе отдельных соединений (титанат бария), двойных или тройных твёрдых растворов (цирконат–титанат свинца). Склонность к образованию твёрдых растворов с неограниченной растворимостью, используют для корректировки параметров сегнетокерамических материалов. При введении малого количества модифицирующих добавок структура керамики на основе твёрдых растворов изменяется незначительно, в то время как электрофизические характеристики изменяются существенно (в некоторых случаях на порядок). Этим объясняется множество разработанных составов для различных практических применений.
Существует взаимосвязь состава, структуры, условий получения кислородсодержащих соединений (твердых растворов) с электрофизическими свойствами пьезокерамики.
В керамическом материале вследствие особенностей технологии его изготовления всегда существуют внутренние и внешние дефекты в виде пор, включений, микротрещин. Поры являются одним из факторов, оказывающих существенное влияние на процесс разрушения керамики. Влияние пор неоднозначно и зависит от их количества, формы, размеров и пространственной ориентации. Как правило, поры локализуются на границах зёрен в особенности на участках стыковки нескольких зёрен. Даже в материалах обладающих высокой плотностью (более 99 %) наблюдаются остаточные микропоры, расположенные преимущественно по границам зёрен. Поры есть концентраторы напряжений и могут вызывать изменение траектории трещины, которая распространяется в наиболее слабых местах, какими служат границы зёрен. Источником разрушения могут быть микропоры внутри зёрен. Размер пор, инициирующих разрушение в керамических материалах, составляет 20–200 мкм .
Зависимость диэлектрической проницаемости от морфологии пор и размера зерна, для керамики на основе титаната бария исследована в работе Цанг-Це Фанга и Фух-Шан Ши [7]. Установлено, что с ростом относительной пористости от 0 до 0,05 величина диэлектрической проницаемости уменьшается линейно с незначительным наклоном. При увеличении относительной пористости от 0,1 до 0,2 наклон кривой уменьшения диэлектрической проницаемости увеличивается. Наличие протяженных (сквозных) пор также приводит к уменьшению диэлектрической проницаемости. Определяющую роль в получении керамики с высокими показателями диэлектрической проницаемости играет минимизация её остаточной пористости. Высокие значения диэлектрической проницаемости наблюдаются даже для крупнозернистой керамики (размерами зёрен от 1,2 до 60 мкм), при условии достижения 99 % плотности от теоретической. В то же время при снижении плотности керамики до ~82% диэлектрическая проницаемость образцов со средним размером зёрен менее 1 мкм снижается значительно.
Мелкозернистая керамика имеет ряд особенностей, ярко проявляющихся в области фазового перехода. Например, с уменьшением размера кристаллитов (областей когерентного рассеяния) возрастают микродеформации, которые могут служить причиной подавления сегнетоэлектрических свойств. То есть диэлектрическая проницаемость и величина зерна неоднозначно связаны: возможно, что диэлектрические свойства подавляются при малом зерне. Подтверждением этого служит исследование, в котором экспериментально показано, что диэлектрическая проницаемость титанат-бариевой керамики уменьшается при снижении размеров её зёрен. При температуре 70 °C на частоте 10 кГц, для керамического BaTiO3 диэлектрическая проницаемость уменьшается от ε=2520 до ε=780 для образцов со средней величиной зерна соответственно d=1200 нм и d=50 нм.
Также большое влияние на электрофизические параметры имеет однородность микроструктуры. При экспериментальном рассмотрении формирования петли гистерезиса в керамике на основе цирконата-титаната свинца (ЦТС) показано, что, чем меньше дисперсия распределения зерен по размерам, тем больше вероятность того, что процессы переполяризации пройдут с меньшими механическими напряжениями.
Несмотря на значительные достижения предшествующих многочисленных разработок, прогресс в совершенствовании указанных материалов в последние годы снизился. Это объясняется тем, что возможности улучшения электрофизических свойств пьезокерамики путём изменения химического состава практически исчерпаны. Вследствие этого на первый план выступает задача поиска новых приёмов совершенствования структуры и морфологии уже существующих материалов, которая может решаться, в частности, за счет применения различных физических воздействий, как при приготовлении исходных порошков, так и в процессе изготовления керамики. Такими приёмами могут быть, в частности, методы компактирования сухих нанопорошков, обеспечивающие равномерное распределение плотности в прессовках сложной формы без применения каких-либо пластификаторов, являющихся потенциальными источниками примесей и дополнительной пористости в спекаемых изделиях, минимизацию внутренних напряжений и макродефектов (расслоения, трещин).
Большинство пьезокерамических порошков также отличаются плохой формуемостью, высокой жёсткостью и низкой прочностью прессовок, что заставляет использовать для производства изделий из них энергоёмкие и специфические способы формования, или традиционные методы формования порошков с большим содержанием пластификаторов, оказывающих негативное влияние на их эксплуатационные свойства.
3.1 Оптически прозрачная керамика
Оптически прозрачная керамика относится к классу функциональной керамики. Прозрачные керамические материалы имеют практически беспористую структуру. В силу этого материалы оказались способными пропускать свет, сохраняя при этом другие свойства, присущие керамическим материалам аналогичного типа, а в ряде случаев и превосходя их. Так, в результате высокой плотности и отсутствия в большинстве прозрачных керамических материалов стекловидной фазы эти материалы не только более устойчивы по сравнению с обычными керамическими материалами к действию агрессивных сред, но и имеют высокий класс чистоты поверхности при их механической обработке. Сочетание светопрозрачности, высокой плотности и возможности получения изделий с высоким классом чистоты поверхности способствовало тому, что области применения прозрачных керамических материалов значительно расширились по сравнению с использованием обычных материалов аналогичного состава.
К числу прозрачных керамических материалов, нашедших достаточно широкое применение, следует отнести керамику на основе окиси алюминия. Эту керамику применяют в качестве материала для изготовления излучательных трубок-оболочек натриевых ламп высокого давления. Последние характеризуются повышенной световой отдачей по сравнению с галогенными, ртутными лампами и лампами накаливания и поэтому более экономичны.
Менее широкое применение, обусловленное дороговизной исходного сырья, сложностью технологического процесса, требующего специального оборудования, находят материалы на основе окислов иттрия и магния, двуокиси циркония, алюмомагнезиальной шпинели, окиси бериллия, двуокиси титана и других составов.
Появление прозрачных керамических материалов обусловлено потребностями новых областей техники, а также связано с созданием специальных приборов, работающих в условиях ночного видения, агрессивных сред, высоких температур, повышенных давлений и т.д. Использование стекла для этих целей ограничивало возможности приборов
Точное определение термина «прозрачная» керамика отсутствует. Японские исследователи этим термином определяют материал, полученный спеканием из неорганических порошков и обладающий такой прозрачностью, когда через неполированную пластинку толщиной в 1мм, лежащую на листе бумаги с текстом, можно читать буквы, что соответствует светопроницаемости более 40%. Ряд других исследователей предпочтение отдают термину «светопропускающая» керамика в отличие от прозрачного стекла. Керамика, пропускающая световые лучи, приобретает все большее значение в светотехнике, оптике, специальном приборостроении, радиоэлектронике, а также в технике высоких температур.
Основными факторами, существенно влияющими на прозрачность керамики, являются кристаллическая многофазность (гетерогенность), характер структуры, взаимное расположение кристаллов, их размер, наличие стекловидной и газовой фаз.
Наиболее благоприятной кристаллической структурой является та, у которой различие коэффициентов преломления по оптическим осям равно нулю, т.е. отсутствует анизотропия. Это – кубическая сингония, в которой коэффициенты преломления кристаллов по осям равны между собой. Ориентация кристаллов (в случае некубической сингонии) повышает светопропускание керамики, беспорядочное, хаотичное расположение их приводит к снижению прозрачности, поскольку происходит рассеивание света, а не направленное его прохождение. Существенное влияние на рассеивание света оказывает размер кристаллов.
Максимальное рассеивание имеет место в случае, когда длина волны падающего света соответствует размеру кристалла. В связи с этим для керамического материала, пропускающего свет в видимой области спектра с длинами волн от 0,4 до 0,8 мкм, необходимо избегать наличия кристаллов с размером от 0,4 до 0,8 мкм. Присутствие стекловидной фазы в керамическом материале с коэффициентом преломления, как правило, отличающимся от коэффициента преломления кристаллической фазы, снижает прозрачность. Особо отрицательное влияние на светопропускание оказывает газовая фаза (поры). Обусловлено это тем, что показатель преломления газовой фазы резко отличается от показателя преломления кристаллических фаз. Так для кристаллов окиси алюминия он равен 1,76, для воздуха 1,0. Зависимость светопропускания керамики на основе окиси алюминия от пористости при разных длинах волн представлена на рисунке 2.
Рис. 2. Светопропускание поликристаллической керамики на основе Al2O3 в
зависимости от пористости (эквивалентная толщина образца 0,5 мм)
Как видно из рисунка 1, светопропускание понижается до 0,01% при объеме пор
всего 3%. При пористости 0,3% пропускание света составляет всего 10% пропускания
через совершенно плотный образец. Светопропускание для керамики из поликристаллической окиси алюминия зависит от пористости, толщины образца, вида и количества добавок и примесей в керамике, диаметра кристаллов, длины волны падающего света. Кроме указанного одним из важных факторов, влияющих на прозрачность монофазной керамики, является ее показатель преломления. Чем выше показатель преломления керамического материала, тем в большей степени при уменьшении длины волны падающего света происходит его отражение от абсолютно гладкой поверхности прозрачного материала.
Области применения прозрачных керамических материалов определяются не только способностью их пропускать свет, но и всем комплексом других рабочих свойств, присущих этим материалам: огнеупорностью, устойчивостью к воздействию агрессивных сред, термомеханическими и электрическими свойствами, наличием или отсутствием пористости и т.д. Однако в большинстве своем определяющим свойством в применении керамики все-таки является ее прозрачность с учетом важнейших для каждого конкретного случая других указанных свойств. Прозрачная керамика используется в светотехнике (изготовление натриевых ламп), в инструментальной оптике (линзы, детекторы, фильтры, лазерах и т. д.) Для этих целей используется керамика «Лукалокс», бериллиевая керамика, «Иттралокс».
Получение прозрачной керамики из высокодисперсных порошков, регулирование
микроструктуры керамики рассмотрены в цикле работ Е.С. Лукина (Лукин Е.С. Современная высокоплотная оксидная керамика с регулируемой микроструктурой, 1996г) [1].
Технология изготовления оптических керамик включает следующие основные этапы: синтез нанопорошков, их компактирование и спекание компактов. В исследованиях, направленных на синтез оптических керамик, основное внимание уделяется получению нанопорошков, их составу, форме и размерам частиц. В то же время компактирование нанопорошков в значительной мере определяет пористость, механические свойства. В настоящее время при изготовлении оптических керамик, как уже упоминалось ранее, используется метод горячего прессования и методы шликерного литья, изостатического, магнито-импульсного прессования. Нашедший широкое применение метод шликерного литья позволяет с большой производительностью изготавливать образцы большого размера при меньших остаточных напряжениях. Однако, данный метод не лишён недостатков, что связано с присутствием в шликере дефлокулянтов, которые не всегда и не в полной мере удаляются из компактов при их отжиге и в качестве включений ухудшают качество керамики.
В этой связи перспективным представляется компактирование порошков методом
статического прессования с ультразвуковым воздействием на нанопорошок.
Воздействие ультразвука в процессе компактирования привело к снижению общего содержания пор и к более равномерному их распределению в образце. Использование ультразвука привело к повышению прозрачности керамики. Однако, эти значения прозрачности ещё не достигают значений, близких к теоретическим (более 81% на длине волны 1,06 мкм). Коэффициент ослабления на длине волны l=1,06 мкм α=2,53 см-1.
Уровень технологических достижений в получении лазерной керамики задают работы японской фирмы Коношима Кемикл (Konoshima Chemical Co. Ltd).