Автор работы: Пользователь скрыл имя, 20 Мая 2015 в 02:27, реферат
Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные, иногда даже незаменимые материалы. Отдельные материалы обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью и т. п. Особо следует отметить технологичность неметаллических материалов.
Следовательно, чем выше напряжение или температура, тем меньше Долговечность.
Температурно-временная зависимость прочности для полимерных материалов выражена сильнее, чем для металлов, и имеет большое значение при оценке их свойств.
Старение полимеров. Под старением полимерных материалов понимается самопроизвольное необратимое изменение важнейших технических характеристик, происходящее в результате сложных химических и физических процессов, развивающихся в материале при эксплуатации и хранении. Причинами старения являются свет, теплота, кислород, озон и другие немеханические факторы. Старение ускоряется при многократных деформациях; менее существенно на старение влияет, влага. Различают старение тепловое, световое, озонное и атмосферное.
Испытание на старение проводится как в естественных условиях, так и искусственными ускоренными методами. Атмосферное старение проводится в различных климатических условиях в течение нескольких лет. Тепловое старение происходит при температуре на 50°С ниже температуры плавления (разложения) полимера. Продолжительность испытания определяется временем, необходимым для снижения основных показателей на 50% от исходных.
Сущность старения заключается в сложной цепной реакции, протекающей с образованием свободных радикалов (реже ионов), которая сопровождается деструкцией и структурированием полимера. Обычно старение является результатом окисления полимера атмосферным кислородом. Если преобладает деструкция, то полимер размягчается, выделяются летучие вещества (например, натуральный каучук); при структурировании повышаются твердость, хрупкость, наблюдается потеря эластичности (бутадиеновый каучук, полистирол). При высоких температурах (200 — 500°С и выше) происходит термическое разложение органических полимеров, причем пиролиз полимеров, сопровождаемый испарением летучих веществ, не является поверхностным явлением (как при простом испарении неполимерных веществ); во всем объеме образца образуются молекулы, способные испаряться.
ПЛАСТИЧЕСКИЕ МАССЫ_______
Пластмассами (пластиками) называют искусственные материалы, получаемые на основе органических полимерных связующих веществ. Эти материалы способны при нагревании размягчаться, становиться пластичными, и тогда под давлением им можно придать заданную форму, которая затем сохраняется. В зависимости от природы связующего переход отформованной массы в твердое состояние совершается или при дальнейшем ее нагревании, или при последующем охлаждении.
I. СОСТАВ, КЛАССИФИКАЦИЯ И СВОЙСТВА ПЛАСТМАСС
Обязательным компонентом пластмассы является связующее вещество. В качестве связующих для большинства пластмасс используются синтетические смолы, реже применяются эфиры целлюлозы. Многие пластмассы, главным образом термопластичные, состоят из одного связующего вещества, например полиэтилен, органические стекла и др.
Другим важным компонентом пластмасс является наполнитель (порошкообразные, волокнистые и другие вещества как органического, так и неорганического происхождения). После пропитки наполнителя связующим получают полуфабрикат, который спрессовывается в монолитную массу. Наполнители повышают механическую прочность, снижают усадку при. прессовании и. придают материалу те или иные специфические свойства (фрикционные, антифрикционные и т. д.). Для повышения пластичности в полуфабрикат добавляют пластификаторы (органические вещества с высокой температурой кипения и низкой температурой замерзания, например олеиновую кислоту, стеарин, дибутилфталат и др.). Пластификатор сообщает пластмассе эластичность, облегчает ее обработку. Наконец, исходная композиция может содержать отвердители (различные амины) или катализаторы (перекисные соединения) процесса отверждения термореактивных связующих, ингибиторы, предохраняющие полуфабрикаты от их самопроизвольного отверждения, а также красители (минеральные пигменты и спиртовые растворы органических красок, служащие для декоративных целей).
Свойства пластмасс зависят от состава отдельных компонентов, их сочетания и количественного соотношения, что позволяет изменять характеристики пластиков в достаточно широких пределах.
По характеру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты) — на основе термореактивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку при формовании (1-3%). Материал отличается большой упругостью, малой хрупкостью и способностью к ориентации. Обычно термопласты изготовляют без наполнителя. В последние годы стали применять термопласты с наполнителями в виде минеральных и синтетических волокон (органопласты).
Термореактивные полимеры после отверждения и перехода связующего в термостабильное состояние (пространственная структура) хрупки, часто дают большую усадку (до 10—15%) при их переработке, поэтому в их состав вводят усиливающие наполнители.
По виду наполнителя пластмассы делят на порошковые (пресс-порошки) с наполнителями в виде древесной муки, сульфитной целлюлозы, графита, талька, измельченных стекла, мрамора, асбеста, слюды, пропитанных связующими (часто их называют карболитами); волокнистые с наполнителями в виде очесов хлопка и льна (волокниты), стеклянного волокна (стекловолокниты), асбеста (асбоволокниты); слоистые, содержащие листовые наполнители (листы бумаги в гетинаксе, хлопчатобумажные, стеклянные, асбестовые ткани в текстолите, стеклотекстолите и асботекстолите, древесный шпон в древеснослоистых пластиках); крошкообразные (наполнитель в виде кусочков ткани или древесного шпона, пропитанных связующим); газонаполненные (наполнитель - воздух или нейтральные газы). В зависимости от структуры последние подразделяют на пенопласты и поропласты.
Современные композиционные материалы содержат в качестве наполнителей угольные и графитовые волокна (карбоволокниты); волокна бора (бороволокниты).
По применению пластмассы можно подразделить на силовые (конструкционные, фрикционные и антифрикционные, электроизоляционные) и несидовые (оптически прозрачные, химически стойкие, электроизоляционные, теплоизоляционные, декоративные, уплотнительные, вспомогательные). Однако это деление условно, так как одна и та же пластмасса может обладать разными свойствами: например, полиамиды применяют в качестве антифрикционных и электроизоляционных материалов и т. д.
Пластмассы по своим физико-механическим и технологическим свойствам являются наиболее прогрессивными и часто незаменимыми материалами для машиностроения.
Недостатками пластмасс являются невысокая теплостойкость, низкие модуль упругости и ударная вязкость по сравнению с металлами и сплавами, а для некоторых пластмасс склонность к старению.
2. ТЕРМОПЛАСТИЧНЫЕ ПЛАСТМАССЫ
В основе термопластичных пластмасс лежат полимеры линейной или разветвленной структуры, иногда в состав полимеров вводят пластификаторы. Термопластичные пластмассы применяют в качестве прозрачных органических стекол, высоко- и низкочастотных диэлектриков, химически стойких материалов; из этих пластмасс изготовляют тонкие пленки и волокна. Детали, выполненные из таких материалов, имеют ограниченную рабочую температуру. Обычно при нагреве выше 60-70°С начинается резкое снижение их физико-механических характеристик, хотя более теплостойкие пластмассы могут работать при температуре 15О-25О°С. Термостойкие полимеры с жесткими цепями и циклические структуры устойчивы до 400-600°С.
Неполярные термопластичные пластмассы. К неполярным пластикам относятся полиэтилен, полипропилен, полистирол и фторопласт-4.
Полиэтилен (- СН2 - СН2 — )„ — продукт полимеризации бесцветного газа этилена, относящийся к кристаллизующимся полимерам.
По плотности полиэтилен подразделяют на полиэтилен низкой плотности, получаемый в процессе полимеризации при высоком давлении (ПЭВД), содержащий 55-65% кристаллической фазы, и полиэтилен высокой плотности, получаемый при низком давлении (ПЭНД), имеющий кристалличность до 74 — 95%.
Чем выше плотность и кристалличность полиэтилена, тем выше механическая прочность и теплостойкость материала.. Теплостойкость полиэтилена невысока, поэтому длительно его можно применять при температурах до 60-100°С. Морозостойкость полиэтилена достигает — 70°С и ниже. Полиэтилен химически стоек, и при комнатной температуре нерастворим ни в одном из известных растворителей. При нагревании устойчив к воде, к ацетону, к спирту.
Недостатком полиэтилена является его подверженность старению. Для защиты от старения в полиэтилен вводят стабилизаторы и ингибиторы (2-3% сажи замедляют процессы старения в 30 раз).
Под действием радиоактивного облучения полиэтилен твердеет, приобретает большую прочность и теплостойкость.
Полиэтилен применяют для изготовления труб, литых и прессованных несиловых деталей (вентили, контейнеры и др.), полиэтиленовых пленок для изоляции проводов и кабелей, чехлов, остекления парников, облицовки водоемов; кроме того, полиэтилен служит покрытием на металлах для защиты от коррозии, влаги, электрического тока и др.
Полипропилен (— СН2 - СНСН3 - ),, - является производной этилена. Применяя металлоорганические катализаторы, получают полипропилен, содержащий значительное количество стереорегулярной структуры. Это жесткий нетоксичный материал с высокими физико-механическими свойствами. По сравнению с полиэтиленом этот пластик более теплостоек: сохраняет форму до температуры 150°С. Полипропиленовые пленки прочны и более газонепроницаемы, чем полиэтиленовые, а волокна эластичны, прочны и химически стойки. Нестабилизированный полипропилен подвержен быстрому старению. Недостатком пропилена является его невысокая морозостойкость (— 10 - 20°С).
Полипропилен применяют для изготовления труб, конструкционных деталей автомобилей, мотоциклов, холодильников, корпусов насосов, различных емкостей и др.Пленки используют в тех же целях, что и полиэтиленовые.
Полистирол ( - СН2 - СНС6Н5 - )„— твердый, жесткий, прозрачный, аморфный полимер. По диэлектрическим характеристикам близок к полиэтилену, удобен для механической обработки, хорошо окрашивается.
Будучи неполярным, полистирол растворяется во многих неполярных растворителях (бензол), в то же время Он химически стоек к кислотам и щелочам; нерастворим в спиртах, бензине, маслах, воде. Полистирол наиболее стоек к радиоактивному облучению по сравнению с другими термопластами (присутствие в макромолекулах фенильного радикала С6Н5).
Недостатками полистирола являются его невысокая теплостойкость, склонность к старению, образование трещин.
Ударопрочный полистирол представляет
собой блоксополимер стирола с синтетическим
каучуком. Такой материал имеет в 3 — 5
раз более высокую прочность на удар и в 10 раз более высокое
относительное удлинение по сравнению
с обычным полистиролом (рис. 199). Высокопрочные
АБС-пластики (
Физико-механические свойства
неполярных термопластов
Материал |
Плотность, г/см3 |
Рабочая температура, °С |
Предел прочности, кгс/мм2 | ||||
максимальная |
минимальная |
при рас-. тяжении |
при сжатии |
при статическом изгибе | |||
Полиэтилен: ПЭВД ПЭНД Полипропилен Полистирол Фторопласт-4 |
0,918-0,93 0,949-0,96 0,9-0,92 1,05-1,1 2,15-2,35 |
105-108 120-125 150 80 250 |
-40,-70 и ниже -70 и ниже -15 -20 -269 |
0,84-1,75 1,95-4,5 2,5 3.5-4 1,4-3,5 |
1,25-2, 1 2-3,6 6 10 2 |
1.2-1,7 2 — 3,8 7-8 5-10 1,1-1,4 | |
Материал |
Относительное удлинение при разрыве, |
Ударная вязкость а, кгс • • см/см- |
Диэлектрическая проницаемость |
Удельное объемное сопротивление Ом ■ см |
Тангенс угла диэлектрических потерь при 106 Гц, 10"4 |
Электрическая прочность, кВ/мм | |
Полиэтилен: ПЭВД ПЭНД Полипропилен Полистирол Фторопласт-4 |
150-600 100-900 100-400 0,4-3,5 250-350 |
Не ломается 33 – 80 10-22 100 |
2,2-2,3 2,1-2,4 2 2 2,5-2,7 1,9-2,2 |
1017 1017 1016 1015 1018 |
2-3 3-4 2-2,5 |
45-60 45-60 28-40 20-25 35-40 |
Фторопласты (отечественное название пластика фторопласт-4, фторлон-4) являются термически и химически стойкими материалами. Основным представителем фторсодержащих полимеров является политетрафторэтилен ( — CF2 — CF2 — ),,. Это насыщенный полимер с макромолекулами в виде зигзагообразных спиралей. До температуры 250°С скорость кристаллизации мала и не влияет на его механические свойства, поэтому длительно эксплуатировать фторопласт-4 можно до температуры 250сС. Разрушение материала происходит при температуре выше 415°С. Аморфная фаза находится в высокоэластическом состоянии, это придает фторо-пласту-4 (фторлону-4) относительную мягкость. Температура стеклования — 120°С, но даже при весьма низких температурах (до — 269°С) пластик не охрупчивается. Высокая термостойкость фторопласта-4 обусловлена высокой энергией связи С — F. Кроме того, вследствие небольшого размера атомы фтора образуют плотную оболочку вокруг цепи С—С и защищают последнюю от химических реагентов. Фторопласт-4 стоек к действию растворителей, кислот, щелочей, окислителей. Практически фторлон-4 разрушается только под действием расплавленных щелочных металлов (калий, натрий) и элементарного фтора, кроме того, вода пластик не смачивает. Политетрафторэтилен малоустойчив к облучению. Это наиболее высококачественный диэлектрик, и его диэлектрические свойства мало изменяются в широком диапазоне температур. Фторопласт-4 обладает очень низким коэффициентом трения (/= 0,04), который не зависит от температуры (до 327°С когда начинает плавиться кристаллическая фаза). Недостатками фто-ропласта-4 являются хладотекучесть (результат рекристаллизации), выделение токсичного фтора при высокой температуре и трудность его переработки (вследствие отсутствия пластичности).