Автор работы: Пользователь скрыл имя, 15 Октября 2012 в 19:12, контрольная работа
Катализаторы современных крупнотоннажных процессов каталитического крекинга, осуществляемых при высоких температурах (500-800 °С) в режиме интенсивного массо- и теплообмена в аппаратах с движущимся или псевдоожиженным слоем катализатора, должных обладать не только высокими активностью, селективностью и термостабильностью, но и удовлетворять повышенным требованиям к ним по регенерационным, механическим и некоторым другим эксплуатационным свойствам.
Термический и каталитический крекинг. 3
Характеристика процессов. 6
Необходимость применения методов в переработке нефти. 9
Необходимость применения методов в переработке нефти. 13
Характеристика процессу каталитической гидроочистки. 14
Список литературы. 15
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Уральский государственный экономический университет
Центр дистанционного образования
«Управление качеством»
специализации «Управление качеством
в производственно-
КОНТРОЛЬНАЯ РАБОТА
Основы технологии переработки природного топлива
Асенов Кирилл Асенов
студента
2-го курса дистанционной формы обучения
Руководитель _______________________ _______________________
|
Тюмень
2012
Содержание:
Содержание.
Термический и каталитический
крекинг.
Характеристика
процессов.
Необходимость
применения методов в переработке
нефти.
Необходимость
применения методов в переработке
нефти.
Характеристика процессу каталитической
гидроочистки.
Список литературы.
Термический и каталитический крекинг.
Катализаторы современных крупнотоннажных процессов каталитического крекинга, осуществляемых при высоких температурах (500-800 °С) в режиме интенсивного массо- и теплообмена в аппаратах с движущимся или псевдоожиженным слоем катализатора, должных обладать не только высокими активностью, селективностью и термостабильностью, но и удовлетворять повышенным требованиям к ним по регенерационным, механическим и некоторым другим эксплуатационным свойствам. Промышленные катализаторы крекинга представляют собой в этой связи сложные многокомпонентные системы, состоящие из: 1) матрицы (носителя); 2) активного компонента — цеолита; 3) вспомогательных активных и неактивных добавок.
Матрица катализаторов крекинга выполняет функции как носителя — поверхности, на которой затем диспергируют основной активный компонент — неолит и вспомогательные добавки, так и слабого кислотного катализатора предварительного (первичного) крекирования высокомолекулярного исходного нефтяного сырья. В качестве материала матрицы современных катализаторов крекинга преимущественно применяют синтетический аморфный алюмосиликат с высокой удельной поверхностью и оптимальной поровой структурой, обеспечивающей доступ для крупных молекул крекируемого сырья. Аморфные алюмосиликаты являлись основными промышленными катализаторами крекинга до разработки цеолитсодержащих катализаторов. Синтезируются они при взаимодействии растворов, содержащих оксиды алюминия и кремния, например жидкого стекла и сернокислого алюминия Химический состав аморфного алюмосиликата может быть выражен формулой, где х — число молей на 1 моль. Обычно в промышленных аморфных алюмосиликатах содержание оксида алюминия находится в пределах 6-30% мас.
Аморфные алюмосиликаты обладают ионообменными свойствами, а для придания каталитической активности обрабатывают их раствором сернокислого алюминия для замещения катионов на. Высушенные и прокаленные аморфные алюмосиликаты проявляют протонную и апротонную кислотности. При этом по мере повышения температуры прокаливания происходит превращение протонных кислотных центров в апротонные.
Активным компонентом катализаторов крекинга является цеолит, который позволяет осуществлять вторичные каталитические превращения углеводородов сырья с образованием конечных целевых продуктов.Цеолиты (от греческого слова цео — кипящий, литос — камень) представляют собой алюмосиликаты с трехмерной кристаллической структурой.
Недостатком всех цеолитов является их не очень высокая механическая прочность в чистом виде, и поэтому они в качестве промышленного катализатора не используются. Обычно их вводят в диспергированном виде в матрицу катализаторов в количестве 10-20% мас.
Вспомогательные
добавки улучшают или придают
некоторые специфические
В отличие от атмосферной и вакуумной перегонки, при которых нефтепродукты получаются путем физического разделения нефти на соответствующие фракции, отличающиеся по температурам кипения, термический крекинг является химическим процессом, происходящим под влиянием высокой температуры и давления, а также времени воздействия этих факторов; при термическом крекинге одновременно протекают реакции распада, уплотнения и перегруппировки.
В нефтеперерабатывающей промышленности в настоящее время широко применяются термический крекинг под давлением, коксование и пиролиз. Термическому крекингу под давлением подвергаются нефтяные остатки и дистиллятные фракции для получения товарного топочного мазута, крекинг-керосина, бензина и крекинг-газа. Коксование нефтяных остатков производится для получения товарного кокса, газа, бензина и соляровых фракций (дистиллятов коксования), являющихся сырьем для дальнейшей переработки. Пиролиз дистиллятного или вторичного дистиллятного сырья, а также легких углеводородов от этана до бутана включительно производится для получения газа с высоким содержанием олефиновых и ароматических углеводородов.
Характеристика процессов.
Термический крекинг под давлением предназначен для переработки тяжелых нефтяных остатков и дистиллятного сырья. К тяжелым нефтяным остаткам относятся мазуты прямой гонки, остатки вакуумной перегонки, масляные гудроны, экстракты селективной очистки масел и другие продукты, не содержащие фракций, выкипающих до температуры 350° С.
Из дистиллятных видов сырья крекированию подвергают: дистилляты коксования, прямогонные соляровые фракции, флегму легкого термического крекинга, лигропновые фракции и низкооктановый бензин прямой гонки.
Тяжелое нефтяное сырье подвергают термическому крекингу под давлением для превращения его в товарный топочный мазут. Одновременно при этом получают до 15% бензинового дистиллята и до 4% крекинг-газа. Крекинг проводят при температуре 455—480е С и давлении 40—50 ат в течение 2—4 мин.
Мазут прямой гонки
и соляр крекируют для
Крекинг под давлением, или термический риформннг прямогонного бензина и лигроиновых фракций, используется для получения компонента автомобильного бензина и крекинг-газа. В зависимости от качества сырья в этом процессе температура составляет 540—560° С и давление 40—60 ат. Октановое число компонента автомобильного бензина с концом кипения 190—195° С колеблется в пределах 70—74 пунктов.
Процесс коксования тяжелого нефтяного сырья возник первоначально в связи с ростом потребности в беззольном электродном нефтяном коксе для изготовления электродов и анодной массы. Процесс коксования ведется при температуре 450° С и атмосферном давлении. В качестве сырья для получения электродного кокса используют остаточные продукты пирогенетического разложения дистиллятного сырья: смолы и пек, крекинг-остатки и гудрон. В связи с развитием процесса каталитического крекинга процесс коксования тяжелых нефтяных остатков становится источником сырья для установок каталитического крекинга
На первом этапе своего развития на установках каталитического крекинга получали высокооктановый компонент авиационного бензина и перерабатывали керосино-газойлевую фракцию, являющуюся, по существу, дизельным топливом. В последующем значительная часть установок каталитического крекинга стала перерабатывать вакуумный отгон от мазута прямой перегонки в смеси с дистиллятом коксования. В настоящее время только небольшое число установок перерабатывает керосино-газойлевую фракцию, вырабатывая компоненты авиационного бензина. Таким образом, при коксовании тяжелого нефтяного сырья получают товарный кокс, газ, бензин и дистиллят коксования, идущий на дальнейшую переработку. Этот процесс способствует увеличению глубины отбора светлых нефтепродуктов из нефти. Процесс пиролиза изучен и разработан главным образом русскими учеными. Еще в 70-х годах XIX в. в Казани и Киеве работали заводы по получению осветительного газа пиролизом нефтяного сырья.
В 1877 г. А. Летний, получив из смолы пиролиза ароматические углеводороды, показал промышленную возможность получения их по этому способу. Во время войны 1914—1917 гг. в Баку было построено несколько пиролизных установок для получения из нефтяного сырья ароматических углеводородов — бензола и толуола.
Современные пирогенные
трубчатые установки
Необходимость применения методов в переработке нефти.
Добываемая на промыслах нефть, помимо растворенных в ней газов, содержит некоторое количество примесей – частицы песка, глины, кристаллы солей и воду. Содержание твердых частиц в неочищенной нефти обычно не превышает 1,5%, а количество воды может изменяться в широких пределах. С увеличением продолжительности эксплуатации месторождения возрастает обводнение нефтяного пласта и содержание воды в добываемой нефти. В некоторых старых скважинах жидкость, получаемая из пласта, содержит 90% воды. В нефти, поступающей на переработку, должно быть не более 0,3% воды. Присутствие в нефти механических примесей затрудняет ее транспортирование по трубопроводам и переработку, вызывает эрозию внутренних поверхностей труб нефтепроводов и образование отложений в теплообменниках, печах и холодильниках, что приводит к снижению коэффициента теплопередачи, повышает зольность остатков от перегонки нефти (мазутов и гудронов), содействует образованию стойких эмульсий. Кроме того, в процессе добычи и транспортировки нефти происходит весомая потеря легких компонентов нефти (метан, этан, пропан и т.д., включая бензиновые фракции) – примерно до 5% от фракций, выкипающих до 100°С.
С целью понижения затрат на переработку нефти, вызванных потерей легких компонентов и чрезмерным износом нефтепроводов и аппаратов переработки, добываемая нефть подвергается предварительной обработке.
Для сокращения потерь легких
компонентов осуществляют стабилизацию
нефти, а также применяют специальные
герметические резервуары хранения
нефти. От основного количества воды
и твердых частиц нефть освобождают
путем отстаивания в
Однако вода и нефть часто образуют трудно разделимую эмульсию, что сильно замедляет или даже препятствует обезвоживанию нефти. В общем случае эмульсия есть система из двух взаимно нерастворимых жидкостей, в которых одна распределена в другой во взвешенном состоянии в виде мельчайших капель. Существуют два типа нефтяных эмульсий: нефть в воде, или гидрофильная эмульсия, и вода в нефти, или гидрофобная эмульсия. Чаще встречается гидрофобный тип нефтяных эмульсий. Образованию стойкой эмульсии предшествуют понижение поверхностного натяжения на границе раздела фаз и создание вокруг частиц дисперсной фазы прочного адсорбционного слоя. Такие слои образуют третьи вещества – эмульгаторы. К гидрофильным эмульгаторам относятся щелочные мыла, желатин, крахмал. Гидрофобными являются хорошо растворимые в нефтепродуктах щелочноземельные соли органических кислот, смолы, а также мелкодисперсные частицы сажи, глины, окислов металлов и т.п., легче смачиваемые нефтью чем водой.
Существуют три метода разрушения нефтяных эмульсий:
· механический:
отстаивание – применяется к свежим, легко разрушимым эмульсиям. Расслаивание воды и нефти происходит вследствие разности плотностей компонентов эмульсии. Процесс ускоряется нагреванием до 120-160°С под давлением 8-15 атмосфер в течение 2-3 ч, не допуская испарения воды.
центрифугирование – отделение механических примесей нефти под воздействием центробежных сил. В промышленности применяется редко, обычно сериями центрифуг с числом оборотов от 350 до 5000 в мин., при производительности 15-45 м3/ч каждая.
· химический:
разрушение эмульсий достигается путем применения поверхностно-активных веществ – деэмульгаторов. Разрушение достигается а) адсорбционным вытеснением действующего эмульгатора веществом с большей поверхностной активностью, б) образованием эмульсий противоположного типа (инверсия ваз) и в) растворением (разрушением) адсорбционной пленки в результате ее химической реакции с вводимым в систему деэмульгатором. Химический метод применяется чаще механического, обычно в сочетании с электрическим.
· электрический:
при попадании нефтяной эмульсии в переменное электрическое поле частицы воды, сильнее реагирующие на поле чем нефть, начинают колебаться, сталкиваясь друг с другом, что приводит к их объединению, укрупнению и более быстрому расслоению с нефтью. Установки, называемые электродегидраторами (ЭЛОУ – электроочистительные установки), с рабочим напряжением до 33000В при давлении 8-10 атмосфер, применяют группами по 6-8 шт. с производительностью 250-500 т нефти в сутки каждая. В сочетании с химическим методом этот метод имеет наибольшее распространение в промышленной нефтепереработке.
Информация о работе Основы технологии переработки природного топлива