Автор работы: Пользователь скрыл имя, 22 Октября 2013 в 01:27, реферат
Усиление интереса к электронной микроскопии объясняется рядом обстоятельств. Это, во-первых, расширение возможностей метода благодаря появлению самых различных приставок: для исследований при низких (до – 150°С) и высоких (до 1200°С) температурах, наблюдения деформации непосредственно в микроскопе, исследования рентгеновских спектров микроучастков (до 1 мкм и менее) объектов, получения изображений в рассеянных электронах и др. Во-вторых, существенное повышение (до 1 Å и менее) разрешающей способности электронных микроскопов, что сделало их конкурентоспособными с автоионными микроскопами в получении прямых изображений кристаллической решетки. Наконец, возможность параллельно с микроскопическими исследованиями детально изучать дифракционные картины вплоть до наблюдения таких тонких деталей, как диффузионное рассеяние электронов.
Введение
Просвечивающая электронная микроскопия
Источники электронов
Система освещения
Коррекция астигматизма
Вспомогательное оборудование для ОПЭМ
Применение просвечивающего электронного микроскопа
Небиологические материалы
Биологические препараты
Высоковольтная микроскопия
Радиационное повреждение
Современные виды ПЭМ
Самой важной приставкой электронного
микроскопа можно считать
2.1 Источники электронов
Обычно используются четыре типа источников электронов: вольфрамовые V-образные катоды, вольфрамовые точечные (острийные) катоды, источники из гексаборида лантана и автоэлектронные источники. В данной главе кратко рассматриваются преимущества каждого вида источника электронов для просвечивающей электронной микроскопии высокого разрешения и их
характеристики. К источникам электронов, используемым в электронной микроскопии высокого разрешения, предъявляются следующие основные требования:
1. Высокая яркость (плотность
тока на единицу телесного
угла). Выполнение этого требования
существенно для экспериментов
при получении изображений
2. Высокая эффективность
использования электронов (отношение
яркости к полной величине
тока первичного пучка
3. Большое время жизни при имеющемся вакууме.
4. Стабильная эмиссия
при длительной (до минуты) экспозиции,
характерной в микроскопии
Идеальной системой освещения
для обычного просвечивающего микроскопа
высокого разрешения была бы система,
позволяющая оператору
2.2. Система освещения
Образец
Рисунок 6 – Осветительная система современного электронного микроскопа
Система имеет две конденсорные линзы С1 (сильная линза) и С2 (слабая линза). F – катод; W – цилиндр Вепельта; S – мнимый источник электронов, S' и S" – его изображения; СА2 – вторая конденсорная диафрагма. Расстояния U1, U2, V1, V2 являются электронно-оптическими параметрами, тогда как расстояния D1, D2, D3 легко измеряются в колонне микроскопа. [4].
На рис. 6 представлены две конденсорные линзы, входящие в систему освещения электронного микроскопа. Обычно можно осуществить независимое изменение фокусного расстояния этих линз (С1 и С2). Возбуждение первой конденсорной линзы изменяют с помощью регулировочной ручки, называемой иногда "размер пятна". Обычно выбирается такое возбуждение, при котором плоскости S, S' и поверхность образца являются сопряженными, т. е. чтобы сфокусированное изображение источника формировалось на образце (сфокусированное освещение).
Для V-образного катода размер
источника приблизительно равен 30 мкм.
Для предотвращения нежелательного
нагрева и радиационного
2.3 Коррекция астигматизма
Регулировка стигматора объективной линзы весьма критична для обеспечения высокого разрешения. В некоторых приборах астигматизм регулируется как по направлению, так и по силе, в то время как в других предусмотрена регулировка силы астигматизма в двух фиксированных ортогональных направлениях. Прежде всего следует грубо скорректировать астигматизм с помощью стигматора до получения симметричности кольца Френеля. При работе с высоким разрешением необходимо возможно более точно скорректировать астигматизм, что можно сделать по изображению структуры тонкой аморфной угольной пленки при большом увеличении. Для тщательной корректировки астигматизма на деталях такого изображения размером 0,3 нм необходимы увеличение микроскопа по крайней мере 400 000-кратное и оптический бинокуляр х10. С помощью ручек изменения фокуса и стигма-тора добейтесь минимального контраста, что достигается при использовании ручек наиболее тонкой регулировки. При недофокусировке объектива в несколько десятков нанометров должна быть видна однородная зернистая структура угольной пленки без анизатропии в каком-либо преимущественном направлении. Это – трудная процедура, требующая значительных навыков. Оптическая дифрактограмма позволяет наиболее быстро проверить правильность коррекции астигматизма, и ее использование особенно важно при освоении процедуры корректировки астигматизма. Важны следующие моменты:
1. Глаза должны полностью адаптироваться к темноте. Для этого необходимо провести по крайней мере 20 мин в темноте.
2. Положение и чистота находящихся в поле линзы объективной диафрагмы и охлаждаемой диафрагмы критически влияют на требуемую установку стигматора. Никогда не трогайте ни ту, ни другую диафрагму после корректировки астигматизма до фотографирования изображения. Самое важное, что астигматизм не меняется во времени и его можно скорректировать. Небольшие загрязнения объективной диафрагмы не создают помех, которые нельзя скорректировать с помощью стигматора. Грязная диафрагма, создающая флуктуации поля, является более серьезной помехой. Проверяйте степень загрязнения диафрагмы объектива, смещая ее во время наблюдения изображения. При небольших смещениях диафрагмы не должно наблюдаться сильное ухудшение астигматизма. Чистоту отверстия охлаждаемой диафрагмы можно проверить при том увеличении, при котором она ограничивает поле зрения. Проверку производят небольшим перемещением охлаждаемой диафрагмы, если это возможно, проводя наблюдение при малом увеличении.
3. Ток коррекции астигматизма
изменяется в зависимости от
типа используемого
4. Часто встречающейся
причиной сильного
5. Нет смысла корректировать
астигматизм до тех пор, пока
охлаждаемая диафрагма не
О чувствительности изображений высокого разрешения к астигматизму можно судить, проводя наблюдение плоскостей графитизированного углерода в светлом поле с ненаклоненным освещением и при этом регулируя стигматор. Чтобы получить изображения плоскостей решетки, расположенных во всевозможных направлениях, нужно точно скомпенсировать астигматизм по двум направлениям. Легче получить изображение плоскостей решетки одного направления, но оно не обеспечивает контроля точной коррекций астигматизма.
Наконец стоит повторить,
что астигматизм нужно
2.4 Вспомогательное оборудование
для обычной просвечивающей
Кроме самого микроскопа имеются
различные вспомогательные
1. Масс-спектрометр или
манометр парциального
2. Работая с высоким
разрешением, полезно
3. Для калибровки увеличения
прибора в условиях
4. Ввиду важности обеспечения термической стабильности при фотографировании темнопольных изображений с длительными экспозициями целесообразно иметь насос для перекачки жидкого азота.
5. Для сдувания с
образца пыли или следов
3. ПРИМЕНЕНИЕ ПРОСВЕЧИВАЮЩЕГО ЭЛЕКТРОННОГО МИКРОСКОПА
Вряд ли остался какой-либо сектор исследований в области биологии и материаловедения, где бы не применялась просвечивающая электронная микроскопия (ПЭМ); это обеспечено успехами техники приготовления образцов.
Все применяемые в электронной
микроскопии методики нацелены на получение
предельно тонкого образца и
обеспечение максимального
3.1 Небиологические материалы
Главной целью электронной
микроскопии высокого разрешения на
сегодняшний день является визуализация
деталей ультраструктуры
Исследования минералов
методом реплик начались несколько
десятков лет назад. Непосредственно
методом просвечивающей электронной
микроскопии первыми были изучены
слюда и глинистые минералы. Среди
первых минералогов, которые использовали
электронную микроскопию в
Электронная микроскопия
применялась также для