Технология производства агломерата на аглофабрике №2 ОАО"ММК"

Автор работы: Пользователь скрыл имя, 09 Ноября 2014 в 13:31, реферат

Краткое описание

Агломерация – один из важнейших этапов металлургического производства. От качества агломерата напрямую зависит качество выплавляемого металла. В данной работе будет рассмотрена структура горно-обогатительного производства и технология производства агломерата.
Необходимость строительства аглофабрики №2 и включения ее в технологическую цепочку металлургического производства ММК была обусловлена качественными характеристиками железных руд, залегавших в нижних горизонтах месторождения г. Магнитной. Из-за значительного содержания в них вредной для металла примеси - серы - их называют сернистыми рудами. Проект фабрики, выполненный свердловским институтом, учитывал эти их особенности: вторая фабрика строилась с целью максимально возможного в ходе первоначальной переработки таких руд выжигания из них серы.

Содержание

Введение
1. Общие сведения
2. Технологическая схема усреднения концентратов
2.1 Основные требования к железорудному сырью и извести, поступающих на усреднение
2.2 Основные требования к усреднённой железорудной смеси, отгружаемой на аглофабрику № 2
2.3 Технология усреднения железорудного сырья и извести
2.4 Требования к складированию продукции
2.5 Методы управления и контроля соблюдения технологии усреднения аглосырья
2.6 Требования по технике безопасности и санитарии при работе на УУК
2.7 Природоохранные мероприятия
2.8 Перечень используемого технологического оборудования
3. Агломерационное производство
3.1 Шихта агломерации и ее подготовка
3.2 Процесс спекания
3.3 Офлюсованный агломерат и его свойства
3.4 Агломерационная машина и технологический процесс производства агломерата
4. Охрана окружающей среды
5. Охрана труда
6. Контролируемые параметры агломерационного процесса
Заключение

Вложенные файлы: 1 файл

Технология производства агломерата на аглофабрике.docx

— 254.08 Кб (Скачать файл)

Все работы по выгрузке, транспортировке, усреднению и выборке аглосырья связаны со значительным пылевыделением. Поэтому перед пуском основного технологического оборудования рабочий обязан пустить в работу аспирационные установки, имеющиеся на его рабочем месте. С целью пылеподавления в течках конвейеров и над заполняемым штабелем должна быть пущена вода в систему гидроорошения.

Все рабочие обязаны применять средства индивидуальной защиты (СИЗ), которые выдаются по установленным нормам за счёт работодателя.

Рабочий обязан правильно применять, поддерживать в исправном состоянии и ремонтировать СИЗ.

 

Таблица 1 – Перечень средств индивидуальной защиты

Наименование СИЗ

ГОСТ

Количество

Срок службы

Каска защитная

ГОСТ 12.4.128-83

1 шт.

2 года

Очки защитные

ГОСТ 12.4.013-97

1 шт.

До износа

Подшлемник

ГОСТ 3897-87

1 шт.

2 года

Перчатки "Хайкрон"

ГОСТ 12.4.010-75

6 пар

1 год

Костюм от нетоксичной пыли х/б

ГОСТ 29.057-91

1 комплект

1 год

Куртка ватная

ГОСТ 29335-92

1 шт.

2 года

Ботинки с металлическим подноском

ГОСТ 12.4.137-84

1 пара

1 год

Респиратор

ГОСТ 12.4.041-89

1 шт.

До износа


 

 

Таблица 2 - Вредные производственные факторы и фактическое состояние условий труда на рабочих местах УУК

№ п/п

Наименование производственного фактора

Ед. измерения

ПДК, ПДУ

Фактический уровень

1

Железо

мг/м3

10,0

22,9

2

Оксид кальция

мг/м3

1,0

19,9

3

Пары щёлочи едкой

мг/м3

0,5

8,3

4

Температура воздуха

гр. С

15-22

5-27


 

 

2.7 Природоохранные мероприятия

 

С целью уменьшения выбросов в атмосферу технологической пыли при транспортировке аглосырья, места наибольшего пылеобразования участка оборудованы аспирационными системами и системами водного пылеподавления.

Работа основного технологического оборудования УУК с отключенными аспирационными системами не допускается. Ответственность за эксплуатацию аспирационных систем возлагается на машинистов основного технологического оборудования, на рабочих местах которых имеются аспирационные установки, и мастеров участка.

Пыль, уловленная аспирационными системами, возвращается в технологический процесс. С целью уменьшения пылеобразования при закладке рудных штабелей всё поступающее агломерационное сырьё увлажняется на лентах сборных конвейеров СК-1 (СК-2) с одновременной подачей воды на гидроорошение закладываемого штабеля.

 

Перечень используемого технологического оборудования

 

В таблице 4 приведен перечень используемого транспортного оборудования, а в таблице 5 – перечень используемого электрооборудования УУК.

 

Таблица 4 - Перечень транспортного оборудования

Наименование оборудования

Техническая характеристика

Скорость движения ленты, м/с

Мощность двигателя,

кВт/ч

 

Длина конвейера, м

Ширина ленты, мм

Угол наклона,

град.

Вид груза

   

1

2

3

4

5

6

7

Ленточный конвейер № 114-1

123,392

1200

-

Рудная смесь

1,564

100,0

Ленточный конвейер № 114-1

123,392

1200

-

Рудная смесь

1,564

100,0

Ленточный конвейер № 705-1

112,530

1400

13045`

Рудная смесь

2,300

315,0

Ленточный конвейер № 705-2

112,530

1400

13045`

Рудная смесь

2,300

250,0

Ленточный конвейер № 705-3

124,720

1200

-

Рудная смесь

1,562

130,0

Ленточный конвейер № 705-4

28,800

1200

-

Рудная смесь

1,300

22,0

Ленточный конвейер № 705-5

36,350

1200

-

Рудная смесь

1,300

22,5

Ленточный конвейер № 705-6

64,0

1200

-

Рудная смесь

1,630

55,0

Ленточный конвейер № 705-7

64,0

1200

-

Рудная смесь

1,630

55,0

Ленточный конвейер № 706-1

205,800

1200

14002`

Рудная смесь

1,562

132,0

Ленточный конвейер № 104-1

165,561

1200

2010`

Концент-

рат

1,470

55,0

Ленточный конвейер № 104-2

3,970

1200

-

Концент-

рат

1,040

18,5

Ленточный конвейер № 16-а

24,200

1200

-

Концент-

рат

1,300

22,0

Ленточный конвейер № 16-б

26,180

1200

2005`

Концент-

рат

1,300

22,0

Ленточный конвейер № СК-1

220,000

1200

-

Рудная смесь

1,562

100,0

Ленточный конвейер № СК-2

220,000

1200

-

Рудная смесь

1,562

110,0

Ленточный конвейер № 705-8

171,800

1400

-

Рудная смесь

1,562

132,0

Ленточный конвейер № 705-9

171,800

1400

-

Рудная смесь

1,562

132,0

Ленточный конвейер № 708-1

43,420

1400

16000`

Рудная смесь

1,562

160,0

Ленточный конвейер № 708-2

43,420

1400

16000`

Рудная смесь

1,562

160,0

Ленточный конвейер № 708-3

31,410

1400

17000`

Рудная смесь

1,562

125,0

Ленточный конвейер № 708-4

31,410

1200

17000`

Рудная смесь

1,562

125,0

Ленточный конвейер

№ 708-3-бис

22,500

1200

-

Рудная смесь

1,300

30,0

Ленточный конвейер

№ 708-4-бис

22,500

1200

-

Рудная смесь

1,300

25,0

Ленточный конвейер № 706-2

136,770

1200

0006`

Рудная смесь

1,562

132,0

Ленточный конвейер № 709-1

186,798

1200

3042`

Рудная смесь

1,562

200,0


 

 

Таблица 5 - Перечень электрооборудования

Наименование агрегата

Тип двигателя

Мощность, кВт/ч

Скорость вращения, об/мин.

1

2

3

4

Тарельчатые питатели №№ 1-5; 13-17

ВРП

ДМ

15,0

18,5

750

750

Тарельчатые питатели №№ 8-12; 20-24

АО

10,0

750

Шлюзовые питатели бункеров

№№ 6,7,18,19

АИР

2,2

1500

Ленточные питатели бункеров

№№ 6,7,18,19

АИР

5,5

1500

Конвейеры № 114-1

№ 114-2

АО2

АО2

100,0

100,0

1500

1500

Конвейеры № 705-1

№ 705-2

ДАН

ДАН

315,0

250,0

1500

1500

Конвейеры № 705-6

№ 705-7

5АМ

5АМ

55,0

55,0

1000

1000

Конвейер № 705-4

АИР

22,0

1500

Конвейер № 705-5

МА

21,5

1500

Конвейер № 705-3

ГАМ

130,0

1000

Конвейер № 706-1

А3

132,0

1000

Конвейер № 104-1

АО

55,0

1000

Конвейер № 104-2

ДМ

18,5

1500

Конвейеры № 16-а

№ 16-б

ВАО

ВАО

22,0

22,0

1000

1000

Конвейеры № СК-1

№ СК-2

АО

АО3

100,0

110,0

1500

1500

Конвейеры № 705-8

№ 705-9

А3

А3

132,0

132,0

1000

1000

Конвейеры № 708-1

№ 708-2

АИР

АИР

160,0

160,0

1500

1500

Конвейеры № 708-3

№ 708-4

АО

АО

125,0

125,0

1500

1500

Конвейеры № 708-3-бис

№ 708-4-бис

4АМ

КО

30,0

25,0

1500

1500

Конвейер № 706-2

4АМ

132,0

1000

Конвейер № 709-1

ВАО

200,0

1500


 

 

Рисунок 1 - Схема технологических потоков приёмки аглосырья на усреднение на УУК

 

3. Агломерационное производство

 

Агломерация - это процесс окускования мелких руд, концентратов и колошниковой пыли спеканием в результате сжигания топлива в слое спекаемого материала. Для производства агломерата предназначены ленточные агломерационные машины со спеканием слоя шихты на движущейся колосниковой решетке при просасывании воздуха через шихту. Продукт спекания (агломерации) – агломерат - представляет собой кусковой, пористый продукт черного цвета; упрощенно можно характеризовать его как спеченную руду или спеченный рудный концентрат.

При агломерации удаляются некоторые вредные примеси (сера и частично мышьяк), разлагаются карбонаты и получается кусковой пористый, к тому же офлюсованный материал. По существу - это металлургическая подготовка.

 

3.1 Шихта агломерации и  ее подготовка

 

Основные составляющие агломерационной шихты - железосодержащие материалы (рудный концентрат, руда, колошниковая пыль); возврат (отсеянная мелочь ранее произведенного агломерата); топливо (коксовая мелочь); влага, вводимая для окомкования шихты; известняк, вводимый для получения офлюсованного агломерата.

Кроме того, в шихту зачастую вводят известь (до 25—80 кг/т агломерата), что улучшает комкуемость шихты, повышая ее газопроницаемость, прочность агломерата; марганцевую руду (до 45 кг/т агломерата) для повышения содержания марганца в чугуне и отходы (прокатную окалину, шламы и другие материалы, вносящие оксиды железа).

Подготовку шихты, как и спекание, ведут на агломерационных фабриках. Подготовка шихты должна обеспечить усреднение, необходимую крупность, дозирование компонентов шихты, смешивание и окомкование ее. Составляющие шихты из бункеров, где они хранятся, выдают с помощью весовых и объемных дозаторов. Дозирование должно обеспечить требуемый состав агломерата.

Для обеспечения равномерного распределения компонентов по всему объему шихты необходимо осуществлять хорошее смешивание шихты, что обычно проводят во вращающихся барабанах, сначала в смесительном, а затем в окомковательном, или совместив эти две операции в одном агрегате. При подаче в барабан воды, разбрызгиваемой над поверхностью шихты, происходит окомкование ее вследствие действия возникающих между частичками материала капиллярных сил. Окомкованная шихта характеризуется более высокой газопроницаемостью. Большое влияние на комкуемость, а, следовательно, и газопроницаемость, оказывает содержание влаги в шихте. Газопроницаемость шихты возрастает по мере увеличения влажности до 6-9 %, а при превышении этой величины шихта превращается в полужидкую массу, газопроницаемость которой низка. После окомкования шихту транспортируют к спекательной машине.

 

3.2 Процесс спекания

 

На колосниковую решетку конвейерной ленты загружают так называемую "постель" высотой 30-35 мм, состоящую из возврата крупностью 10-25 мм. Затем загружают шихту (250-350 мм). Под колосниковой решеткой создают разрежение около 7-10 кПа, в результате чего с поверхности в слои засасывается наружный воздух.

Чтобы процесс начался, специальным зажигательным устройством нагревают верхний слой шихты до 1200-1300 °С, и топливо воспламеняется. Горение поддерживается в результате просасывания атмосферного воздуха. Зона горения высокой около 20 мм постепенно продвигается сверху вниз (до колосников) со скоростью 20-30 мм/мин.

В зоне горения температура достигает 1400-1500 °С. При таких температурах известняк СаСО3 разлагается на СаО и СО2, а часть оксидов железа шихты восстанавливается до FeO. Образующиеся СаО и FeO, а также оксиды шихты SiO2, Fe3O4, Fe2О3, А12О3 и др. вступают в химическое взаимодействие с образованием легкоплавких соединений, которые расплавляются. Образующаяся жидкая фаза пропитывает твердые частицы и химически взаимодействует с ними. Когда зона горения опустится ниже мест образования жидкой фазы, просасываемый сверху воздух охлаждает массу, пропитанную жидкой фазой, и последняя затвердевает, в результате чего образуется твердый пористый продукт - агломерат. Поры возникают в результате испарения влаги и просасывания воздуха. Продвижение через слой шихты сверху вниз зоны, в которой происходит горение топлива и формирование агломерата (т.е. спекаемого слоя), длится 8-12 мин и заканчивается при достижении постели.

Рассмотрим основные химические реакции, протекающие при агломерации. Горение топлива происходит по реакциям:

 

С + 0,5О2 = СО;

С + О2 = СО2.

 

В отводимых продуктах горения отношение СО2/СО равно 4-6, но вблизи горящих кусочков кокса атмосфера восстановительная (преобладает СО), что вызывает восстановление оксидов железа.

Большая часть непрочных оксидов Fе2О3 превращается в Fе3О4 в результате восстановления: Fе2О3 + СО = Fе3О4 + СО2, либо в результате диссоциации: 6Fe2O3 =4Fe3O4.

Часть оксидов Fe3O4 восстанавливается до FeO: Fe3O4 + СО = 3FeO + СО2.

Содержание FeO в агломерате обычно находится в пределах 8—17 %, оно возрастает при увеличении расхода кокса на агломерацию; одновременно уменьшается остаточное содержание Fе2О3.

Известняк разлагается по реакции СаСО3 = СаО + СО2, идущей с поглощением тепла.

При агломерации удаляется сера и частично (около 20 %) мышьяк. Сера в шихте обычно находится в виде сульфида железа FeS2 (пирит), а иногда в виде сульфатов СаSО4 • 2Н2О (гипс) и BaSO4 (барит). Пирит в условиях агломерации окисляется по нескольким реакциям, одна из них:

 

3FeS2 +2О2 = Fe3O4 + 6SO2.

 

Гипс и барит разлагаются при 1200-1400°С по реакциям CaSO4 = СаО + SО3;

Информация о работе Технология производства агломерата на аглофабрике №2 ОАО"ММК"