Автор работы: Пользователь скрыл имя, 27 Ноября 2013 в 22:35, реферат
По достижении импульсным напряжением определенного значения между электродом-инструментом (4) и электродом-деталью (1) в диэлектрической жидкости (2) происходит электрический пробой. При этом от электрода, который в данный момент является катодом, отделяется стример (3) и направляется к аноду, ионизируя на своем пути жидкость. В результате этой фазы (её длительность 10-9–10-7 с) образуется канал сквозной проводимости и сопротивление межэлектродного промежутка снижается от нескольких МОм до долей Ом (а).
1. ВВЕДЕНИЕ 3 стр.
2. ХРОМИРОВАНИЕ 8 стр.
3. ОБЩИЕ СВЕДЕНИЯ 10 стр.
4. ОБЛАСТИ ПРИМЕНЕНИЯ ХРОМОВЫХ ПОКРЫТИЙ 11стр.
5. РЕЖИМЫ ХРОМИРОВАНИЯ 12стр.
6. ПРИГОТОВЛЕНИЕ, КОРРЕКТИРОВАНИЕ И РАБОТА ХРОМОВЫХ ВАНН 13стр.
ПРИГОТОВЛЕНИЕ ЭЛЕКТРОЛИТА 13стр.
КОРРЕКТИРОВАНИЕ ЭЛЕКТРОЛИТА 14стр.
АНОДЫ 14стр.
ВЛИЯНИЕ ПРИМЕСЕЙ 14стр.
РАБОТА ХРОМОВОЙ ВАННЫ 15стр.
УДАЛЕНИЕ ПОКРЫТИЯ 16стр.
ОСНОВНЫЕ ДЕФЕКТЫ ХРОМОВЫХ ПОКРЫТИЙ 16стр.
7. ТЕХНОЛОГИЯ ХРОМИРОВАНИЯ 18стр.
ЗАЩИТНО-ДЕКОРАТИВНОЕ ХРОМИРОВАНИЕ 18стр.
ПОКРЫТИЯ МОЛОЧНЫМ ХРОМОМ 19стр.
ИЗНОСОСТОЙКИЕ ПОКРЫТИЯ ХРОМОМ 19стр.
УСЛОВИЯ ХРОМИРОВАНИЯ 20стр.
ХРОМИРОВАНИЕ АЛЮМИНИЯ 25стр.
КОНТРОЛЬ 25стр.
8. СОВРЕМЕННОЕ СОСТОЯНИЕ ТЕХНОЛОГИЧЕСКИХЛИНИЙ ХРОМИРОВАНИЯ 27стр.
ПЕРСПЕКТИВЫ РАЗВИТИЯ ХРОМИРОВАНИЯ 27стр.
9. ТЕХНИКА БЕЗОПАСНОСТИ 29стр.
10. ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА 30стр.
При декоративном покрытии стальных изделий хромом (ГОСТ 3002-45) хром является наружным слоем многослойного покрытия: медь (осажденная в цианистом электролите) – медь (осажденная в кислом электролите) – никель – хром или никель – медь (кислая) – никель – хром.
ПОКРЫТИЯ МОЛОЧНЫМ ХРОМОМ.
При осаждении хрома на многослойное покрытие защита основного металла детали от коррозии осуществляется прослойкой из меди и никеля.
В ряде случаев покрытие должно обеспечить не только защиту от коррозии, но и высокую стойкость против механического износа. Получение такого хромового покрытия может состоять в осаждении молочного хрома и увеличении толщины покрытия.
На пористость участков хрома сильное
влияние оказывают режим
Неодинаковая коррозионная стойкость хромовых осадков объясняется различной степенью пассивности хрома на поверхности покрытия и по граням трещин.
Однако, несмотря на более высокую пассивность и химическую стойкость молочных осадков хрома по сравнению с блестящими, они плохо защищают деталь при одновременном действии на нее коррозионной среды и знакопеременной нагрузки.
ИЗНОСОСТОЙКИЕ ПОКРЫТИЯ ХРОМОМ.
Износостойкое хромирование получило три основных направления: 1) повышение износостойкости новых деталей машин и инструмента, подвергающихся механическому износу в процессе работы; 2) восстановление размеров изношенных деталей и 3) исправление деталей, размеры которых оказались заниженными при механической обработке.
Толщина хрома при износостойком покрытии хромом в большинстве случаев составляет 0,03-0,3 мм, в отдельных случаях ее увеличивают до 1,0 мм. Как правило, слой охлажденного хрома должен иметь одинаковую толщину по всей поверхности покрытия. Для достижения положительного эффекта в результате хромирования необходимы следующие условия.
Металл детали, являющийся основой для слоя хрома, должен иметь достаточно высокую твердость. Это особенно касается деталей, работающих при высоких удельных нагрузках при сосредоточенном их действии на отдельных участках поверхности покрытия.
При выборе технологического процесса хромирования необходимо считаться с условиями эксплуатации деталей. Если смазка трущихся поверхностей затруднена, а удельные нагрузки достаточно высоки, то следует применять покрытие пористым хромом. Во всех прочих случаях прибегают к осаждению плотных хромовых покрытий.
Наиболее часто износостойкому хромированию подвергаются стальные и чугунные детали машин. Химический состав металла покрываемой детали редко служит препятствием к хорошему сцеплению. Однако следует иметь в виду, что стали с высоким содержанием вольфрама и кобальта, а также высокоуглеродистые и высококремнистые чугуны нельзя покрывать хромом. Также трудно получить хорошее сцепление при хромировании деталей, поверхностный слой которых испытывает значительные внутренние напряжения, например, в результате неправильно проведенной закалки.
УСЛОВИЯ ХРОМИРОВАНИЯ.
Процесс износостойкого хромирования
по сравнению с защитно-
Режимы хромирования, обеспечивающие получение блестящих (более твердых) и молочных (сравнительно мягких и эластичных) осадков, выбираются в зависимости от назначения деталей, условий их службы и требований, предъявляемых к покрытию. Ниже приведены основные режимы хромирования для получения осадков того или другого типа:
а) при осаждении блестящего хрома:
Температура электролита ……………………………54 – 56о
Катодная плотность тока Dк………………………….30 – 50 а/дм2
Температура электролита…………………………….66 – 68о
Катодная плотность тока Dк………………………….80 – 100 а/дм2
б) при осаждении молочного хрома:
Температура электролита ……………………………68 – 72о
Катодная плотность тока Dк………………………….25 – 30 а/дм2
в) при осаждении молочно-
Температура электролита ……………………………60 – 65о
Катодная плотность тока Dк………………………….30 – 35 а/дм2
При выборе режима хромирования следует считаться с рельефностью детали и формой применяемого анода, определяющими степень неравномерности распределения тока между ближними и дальними участками детали.
При хромировании может оказаться,
что отдельные участки
При покрытии хромом деталей, имеющих некоторый рельеф, или при одновременном покрытии однотипных деталей, смонтированных на нескольких подвесках, хромирование следует начинать с толчка тока. При этом плотность тока должна быть, примерно, в 1,5 раза больше заданной. Продолжительность толчка тока составляет 2-3 мин., затем плотность тока постепенно, в течение нескольких минут, снижают до установленной величины.
Если по техническим причинам невозможно создание толчка тока, то хромирование следует начинать хотя бы при установленной величине плотности тока или близкой к ней. Совершенно не допускается начинать электролиз с небольшой плотности тока, а затем повышать ее до требуемой величины.
Размерное хромирование. Сущность размерного хромирования состоит в том, что детали покрываются слоем хрома точно до заданного размера и направляются в производство без последующей механической обработки. Размерное хромирование создает экономию в хромовом ангидриде и расходах на механическую обработку детали. При размерном хромировании требуется осадить слой хрома совершенно одинаковой толщины и точно сохранить первоначальную форму детали, например, при хромировании цилиндрических деталей не допускается конусность или овальность.
Для размерного хромирования требуется применение фигурных анодов, специальных подвесных приспособлений, позволяющих жестко монтировать детали и аноды, а также изолирующих экранов. Монтаж должен выполняться таким образом, чтобы в процессе электролиза концентрация силовых линий тока была одинаковой на всей поверхности хромируемой детали.
Значение величины выхода по току
и плотности тока при хромировании
позволяет точно определить время,
необходимое для осаждения
τ = 1314 мин.,
где τ – время в мин.,
δ – толщина покрытия в мк,
Dk – катодная плотность тока в а/дм2,
η – выход по току в %.
Однако для получения
Если к покрываемой детали предъявляется высокие требования в смысле чистоты поверхности и границ допуска на изготовление, то размерное хромирование пригодно только при сравнительно малых толщинах слоя хрома. Примером могут служить гладкие калибры, хромируемые на толщину слоя 10-30 мкм. Сравнительно толстые покрытия возможно наносить при размерном хромировании деталей с более широкой границей допусков, например, цилиндров двигателей внутреннего сгорания. Для этих деталей допускается некоторая конусность и эллипсность, величины которых практически лежат около 0,01 мм.
Расположение деталей и анодов в ванне. При одинаковом межэлектродном расстоянии на всех участках хромируемой поверхности соотношение между током, протекающим по кратчайшему расстоянию между катодом и анодом (создающим равномерное покрытие), и током, распространяющимся во всем объеме электролита (создающим краевой эффект), зависит как от межэлектродного расстояния, так и от положения детали относительно анода и уровня электролита.
Положение детали в ванне важно при хромировании наружных поверхностей и не влияет на хромирование внутренних цилиндрических поверхностей, если оно производится в правильно сконструированном анодно-катодном устройстве.
Расположение детали
глубоко в ванне при еще
более глубоко находящемся
Можно значительно улучшить распределение тока, если верхний край детали расположить непосредственно под уровнем электролита (устраняется отвлечение тока через верхний объем электролита), а нижний край анода, поднять выше нижнего края детали (увеличится сопротивление току, отвлекаемому в нижний объем электролита). При хромировании поверхностей простой формы (цилиндр, плоскость) для достижения наиболее равномерного покрытия необходимо анод расположить параллельно хромируемой поверхности при минимальном межэлектродном расстоянии. Упрощенным вариантом этого, требования является расположение плоских анодов со всех сторон хромируемой цилиндрической детали.
Действие межэлектродного расстояния проявляется особенно сильно при его изменениях в пределах величин, соизмеримых с размерами электродов, и имеет значение для характерных при износостойком хромировании деталей с простым рельефом (цилиндрических и плоских)
Для деталей с развитым
рельефом, характерным для защитно-
Возможность практически полного исключения концентрации тока даже на остриях путем расположения их непосредственно под уровнем электролита показана на рисунке.
На следующем рисунке изображены некоторые характерные схемы монтажа при хромировании внутренней и наружной поверхностей деталей.
1-экран, 2- газовые пузырьки.
Для равномерного осаждения хрома на внутренних гранях и в углах детали анод должен иметь оттянутые углы (а). При хромировании внешней поверхности для предупреждения образования грубых "пригорелых" осадков хрома на углах детали аноду следует придать форму хромируемой детали (б), а напротив ее углов установить непроводящие ток экраны.
При хромировании деталей, отличающихся сложной формой (пресс-формы, штампы и т.п.), как правило, используют фигурные аноды (в), воспроизводящие очертания хромируемой поверхности.
На рисунке (в) деталь расположена неверно, так как скапливающиеся на нижней поверхности газовые пузырьки нарушают хромирование этой поверхности.
При хромировании внутренней поверхности цилиндра анод помещают внутри соосно с хромируемой поверхностью. Однако в данном случае необходимо иметь в виду, что при слишком маленьком анодно-катодном расстоянии, при высоких плотностях тока и небольшом объеме электролита, заключенного между электродами, происходит сильное насыщение газами его верхних слоев. Вследствие этого, толщина осажденного хрома в верхней части цилиндра получается меньше, чем в нижней. Для предупреждения неравномерного осаждения хрома по высоте длинных цилиндров хромирование следует выполнять в проточном электролите.
Особое значение для понижения краевого эффекта имеет применение защитных катодов и изолирующих экранов. На следующем рисунке приведены некоторые приемы их использования, а также способ устранения краевого эффекта путем изоляции межэлектродного объема от остального электролита и его уменьшение за счет сокращения межэлектродного расстояния.
а - схема краевого эффекта; б - защитные катоды при местном хромировании вала; в - проволочный защитный катод у края фасонной детали; г - защитный катод у нижнего края цилиндра (верхний край под уровнем электролита); д - схема экранирования вала от влияния фланца и краевого эффекта; е - экранирование нижней части вала (верхняя находится под уровнем электролита); ж - изоляция межэлектродного объема от остального электролита; з - снижение краевого эффекта при уменьшении межэлектродного расстояния.
1 - изоляция; 2 - хромируемая поверхность; 3 - защитный катод