Автор работы: Пользователь скрыл имя, 09 Ноября 2013 в 21:05, реферат
Особливості формування поняття про дроби у молодших школярів являє особливий інтерес як для педагогічної психології навчання, так і для вікової психології. Дроби мають широке застосування в повсякденному житті. Це зумовлює потребу у викладанні уявлень про дроби уже в початковій школі. Разом з тим викладання дробів у молодших класах пов‘язане з певними труднощами, які з однієї сторони, змушують різко обмежити об‘єм знань про дроби, з якими ознайомлюють молодших школярів, а з другої сторони, викликає тенденцію до такого способу введення дробів, який не відповідає поняттю про них.
Яка із цих точок зору краще? «Нова точка зору, безсумнівно, чистіше, але в той же час і бідніше», - відзначає Ф. Клейн. Вона дає тільки абстрактне, логічно точне введення дробів, але залишає відкритим не менш важливе питання: чи застосовна ця теоретична побудова «до вимірюваних величин, з якими нам доводиться мати справу”. Це питання в самій математиці може розглядатися самостійно. «Уявляється, однак, сумнівним, - указує Ф. Клейн, - чи можна такий поділ вважати за доцільне й з педагогічної точки зору».
Отже, позицію Ф. Клейна можна охарактеризувати в такий спосіб. По-перше, з його погляду, підхід до дробів як до пар цілих чисел хоча логічно й більше чистий, чим підхід з боку вимірювання, але й більш бідний, тому що не забезпечує застосування нових символів до вимірювання величин, «до зовнішнього світу». Саме цей недолік відсутній у шкільній традиції. По-друге, логічно чистий підхід не виводить людини за межі поняття про ціле число, не формує в неї належних наочних уявлень, що лежать в основі своєрідності дробів. Опора на вимірювання створює ці своєрідні уявлення, які досить істотні для практичної діяльності з величинами. По-третє, він захищає й підтримує педагогічну точку зору, відповідно до якої в основі переходу від цілих чисел до дробів повинне лежати нове уявлення учнів про вимірювані величини.
Досить оригінальну позицію в проблемі введення чисел у школі займав видатний французький математик А. Лебег. Він думав, що після натуральних чисел на основі виміру потрібно відразу переходити до походження й природи всієї області дійсних чисел (до нескінченних десяткових дробів), минаючи вивчення звичайних і навіть кінцевих десяткових дробів .
Зміст цих поглядів А. Лебега були докладно проаналізовані
Тут важливий насамперед наступний висновок А. Н. Колмогорова: «Одне з основних завдань книги Лебега полягає в тому, щоб показати, що підхід до побудови раціональних і дійсних чисел з погляду вимірювання величин анітрошки не менш науковий, чим, наприклад, введення раціональних чисел у вигляді «пар». Для школи ж він має безсумнівні переваги. Першою перевагою є відповідність цього підходу історичному розвитку математики й наявному в учнів повсякденному досвіду. Другим же - та обставина, що він робить необхідним введення дійсних чисел».
А. Н. Колмогоров вважає, що А. Лебег правий постановці й принциповому рішенні цієї педагогічної задачі. Він також підтримує ідею А. Лебега про те, що для школи існує одна нероздільна задача - привести учнів до можливо більше ясного розуміння концепції дійсного числа. При її рішенні важливо зберегти єдність викладання математики на різних щаблях навчання. Для цього необхідно, щоб у початковій школі учні знайомилися з операцією вимірювання одержуючи з неї кінцеві десяткові дроби. На прикладі періодичних дробів, що виникають при діленні, можна закинути ідею про нескінченний дріб. У середній школі докладніше розбирається питання про точність вимірів, а потім через ряд етапів формулюється загальне поняття дійсного числа.
Таким чином, і для А. Лебега, і для А. Н. Колмогорова введення раціональних чисел на основі вимірювання величин не менш наукове ніж у вигляді «пар», крім того, воно відповідає історичному розвитку самої математики. Остання обставина особливо важливі. Справа в тому, що в математиці та й у її викладанні, часто трапляються випадки забуття реального походження понять, що веде до втрати їх первісного матеріального змісту. А. Лебег показав, як тісно ці поняття пов'язані з аналізом реальних процесів вимірювання. Протягом всієї книги він бореться за повернення математичним поняттям їхнього первісного змісту, за з'ясування їхнього реального походження, що .є умовою продуктивного вивчення математики. «У цій боротьбі, - пише А. Н. Колмогоров, - я й бачу основний інтерес книги Лебега».
Саме операція вимірювання надає раціональному й дійсному числу первісний матеріальний зміст, тому що ці числа є «знаряддям виміру величин». На основі цієї операції в учнів можна сформувати правильне поняття про раціональні дроби, а потім підготувати ґрунт для переходу до ірраціональних чисел, тобто для роботи у всій області дійсних чисел. При цьому ті самі поняття спочатку повинні будуватися на наочній базі, потім формулюватися вже більш чітко й, нарешті, піддаватися тонкому логічному аналізу (останнє характерно для старших класів).
Як бачимо, загальна лінія, пов'язана із введенням дробів у школі, однакова у Ф. Клейна, А. Лебега й А. Н. Колмогорова. Відповідно до їхніх положень дроби по первісному походженню й матеріальному змісту мають тільки одне джерело вимірювання величин. У їхніх роботах взагалі немає мови про такі джерела, як ділення речей і чисел вимірювання величин й історично, і в сучасному викладанні є цілком повноцінною й перспективною основою введення дробових чисел.
ВИСНОВКИ
Дроби мають широке застосування в повсякденному житті. Це зумовлює потребу у формуванні уявлень про дроби уже в початковій школі. Проте, разом з тим, викладання дробів у молодших класах пов‘язане з певними труднощами, які з однієї сторони змушують різко обмежити об‘єм знань про дроби, з якими ознайомлюють молодших школярів, а з іншої сторони, викликає тенденцію до такого способу введення дробів, який не відповідає поняттю про них.
У молодших школярів необхідно створити конкретні уявлення про процес утворення частин від цілого предмета чи сукупності предметів. З цією метою вже в 3 класі дітей ознайомлюють з частинами, їх записом, вчать знаходити частину числа та число за відомою його частиною. У класі продовжують працювати над засвоєнням частини числа, учнів ознайомлюють з дробами та їх записом, вчать порівнювати частини, знаходити кілька частин від числа, дробів від числа, розв‘язувати складені задачі, що передбачають знаходження дробу від числа.
Розглядають ці питання з допомогою наочності, виконуючи практичні вправи, пов‘язані з кресленням, вимірюванням, перегинанням, практичним поділом круга, прямокутника, смужки на рівні частини.
Щоб сформувати правильні уявлення
про частки, треба використати
достатню кількість різних наочних
посібників. Як показав досвід, найзручнішими
посібниками є геометричні
Формування уявлень про частку величини також сприяє розв‘язування задач на знаходження частки числа і числа за його часткою. Ці задачі розв‘язують на наочній основі. Не слід формулювати спеціальних правил для розв‘язування цих задач. Формальний підхід, як це показує практика, може привести до того, що діти починають плутати ці дві задачі, допускають помилку при виборі дій.
Утворення дробів, як і утворення часток, розглядають за допомогою наочних посібників.
Для закріплення здобутих знань розв‘язують такі самі вправи, як і під час знайомлення з частками: за даними ілюстраціями називають і записують, які дроби зображені, або зображують дріб за допомогою креслення, рисунка. Засвоєнню конкретного змісту дробу допомагають вправи на порівняння дробів, а також розв‘язування задач на знаходження дробу числа.
Ознайомлюючи учнів із дробами слід опиратися на досвід учнів, знання, поновити їх і систематизувати.
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
1) Бантова М.А., Бельтюкова Г.В., Полевщикова О.В. Методика викладання математики в початкових класах. – К.: Вища школа, 1977. – С. 273-279.
2) Богданович М.А., Будна Н.О., Лисенко
Г.П. Урок математики в
3) Богданович М.В., Козак М.В., Король
Я.А. Методика викладання
4) Шевченко И.Н. Методика преподавания арифметики в V-VI классах. – М.: АПН РСФСР, 1961. – С. 80-95.
Информация о работе Дроби в курсі математики початкових класів