Оптимизация локальных сетей

Автор работы: Пользователь скрыл имя, 09 Января 2014 в 10:58, лекция

Краткое описание

Все варьируемые параметры могут быть сгруппированы различным образом. Например, параметры отдельных конкретных протоколов (максимальный размер кадра протокола Ethernet или размер окна неподтвержденных пакетов протокола TCP) или параметры устройств (размер адресной таблицы или скорость фильтрации моста, пропускная способность внутренней шины маршрутизатора). Параметрами настройки могут быть и устройства, и протоколы в целом. Так, например, улучшить работу сети с медленными и зашумленными глобальными каналами связи можно, перейдя со стека протоколов IPX/SPX на протоколы TCP/IP. Также можно добиться значительных улучшений с помощью замены сетевых адаптеров неизвестного производителя на адаптеры BrandName.

Вложенные файлы: 1 файл

Критерии надежности работы сети.docx

— 49.11 Кб (Скачать файл)

При оценке производительности сети не по отношению к отдельным  парам узлов, а ко всем узлам в  целом используются критерии двух типов: средно-взвешенные и пороговые.

Средно-взвешенный критерий представляет собой сумму времен реакции всех или некоторых узлов при взаимодействии со всеми или некоторыми серверами сети по определенному сервису, то есть сумму вида

где Tij - время реакции i-го клиента при обращении к j-му серверу, n - число клиентов, m - число серверов. Если усреднение производится и по сервисам, то в приведеном выражении добавится еще одно суммирование - по количеству учитываемых сервисов. Оптимизация сети по данному критерию заключается в нахождении значений параметров, при которых критерий имеет минимальное значение или по крайней мере не превышает некоторое заданное число.

Пороговый критерий отражает наихудшее время реакции по всем возможным сочетаниям клиентов, серверов и сервисов:

где i и j имеют тот же смысл, что и в предыдущем случае, а k обозначает тип сервиса. Оптимизация также может выполняться с целью минимизации критерия, или же с целью достижения им некоторой заданной величины, признаваемой разумной с практической точки зрения.

Чаще применяются пороговые  критерии оптимизации, так как они  гарантируют всем пользователям  некоторый удовлетворительный уровень  реакции сети на их запросы. Средне-взвешенные критерии могут дискриминировать некоторых пользователей, для которых время реакции слишком велико при том, что при усреднении получен вполне приемлемый результат.

Можно применять и болеее дифференцированные по категориям пользователей и ситуациям критерии. Например, можно поставить перед собой цель гарантированть любому пользователю доступ к серверу, находящемуся в его сегменте, за время, не превышающее 5 секунд, к серверам, находящимся в его сети, но в сегментах, отделенных от его сегмента коммутаторами, за время, не превышающее 10 секунд, а к серверам других сетей - за время до 1 минуты.

1.2.2. Пропускная  способность

Основная задача, для решения  которой строится любая сеть - быстрая  передача информации между компьютерами. Поэтому критерии, связанные с  пропускной способностью сети или части  сети, хорошо отражают качество выполнения сетью ее основной функции.

Существует большое количество вариантов определения критериев  этого вида, точно также, как и в случае критериев класса "время реакции". Эти варианты могут отличаться друг от друга: выбранной единицей измерения количества передаваемой информации, характером учитываемых данных - только пользовательские или же пользовательские вместе со служебными, количеством точек измерения передаваемого трафика, способом усреднения результатов на сеть в целом. Рассмотрим различные способы построения критерия пропускной способности более подробно.

Критерии, отличающиеся единицей измерения передаваемой информации. В качестве единицы измерения передаваемой информации обычно используются пакеты (или кадры, далее эти термины будут использоваться как синонимы) или биты. Соответственно, пропускная способность измеряется в пакетах в секунду или же в битах в секунду.

Так как вычислительные сети работают по принципу коммутации пакетов (или кадров), то измерение количества переданной информации в пакетах  имеет смысл, тем более что  пропускная способность коммуникационного  оборудования, работающего на канальном  уровне и выше, также чаще всего  измеряется в пакетах в секунду. Однако, из-за переменного размера  пакета (это характерно для всех протоколов за исключением АТМ, имеющего фиксированный размер пакета в 53 байта), измерение пропускной способности в пакетах в секунду связано с некоторой неопределенностью - пакеты какого протокола и какого размера имеются в виду? Чаще всего подразумевают пакеты протокола Ethernet, как самого распространенного, имеющие минимальный для протокола размер в 64 байта (без преамбулы). Пакеты минимальной длины выбраны в качестве эталонных из-за того, что они создают для коммуникационного оборудования наиболее тяжелый режим работы - вычислительные операции, производимые с каждым пришедшим пакетом, в очень слабой степени зависят от его размера, поэтому на единицу переносимой информации обработка пакета минимальной длины требует выполнения гораздо больше операций, чем для пакета максимальной длины.

Измерение пропускной способности  в битах в секунду (для локальных  сетей более характерны скорости, измеряемые в миллионах бит в секунду - Мб/c) дает более точную оценку скорости передаваемой информации, чем при использовании пакетов.

Критерии, отличающиеся учетом служебной информации. В любом протоколе имеется заголовок, переносящий служебную информацию, и поле данных, в котором переносится информация, считающаяся для данного протокола пользовательской. Например, в кадре протокола Ethernet минимального размера 46 байт (из 64) представляют собой поле данных, а оставшиеся 18 являются служебной информацией. При измерении пропускной способности в пакетах в секунду отделить пользовательскую информацию от служебной невозможно, а при побитовом измерении - можно.

Если пропускная способность  измеряется без деления информации на пользовательскую и служебную, то в этом случае нельзя ставить задачу выбора протокола или стека протоколов для данной сети. Это объясняется тем, что даже если при замене одного протокола на другой мы получим более высокую пропускную способность сети, то это не означает, что для конечных пользователей сеть будет работать быстрее - если доля служебной информации, приходящаяся на единицу пользовательских данных, у этих протоколов различная (а в общем случае это так), то можно в качестве оптимального выбрать более медленный вариант сети. Если же тип протокола не меняется при настройке сети, то можно использовать и критерии, не выделяющие пользовательские данные из общего потока.

При тестировании пропускной способности сети на прикладном уровне легче всего измерять как раз  пропускную способность по пользовательским данным. Для этого достаточно измерить время передачи файла определенного  размера между сервером и клиентом и разделить размер файла на полученное время. Для измерения общей пропускной способности необходимы специальные  инструменты измерения - анализаторы  протоколов или SNMP или RMON агенты, встроенные в операционные системы, сетевые  адаптеры или коммуникационное оборудование.

Критерии, отличающиеся количеством и расположением  точек измерения. Пропускную способность можно измерять между любыми двумя узлами или точками сети, например, между клиентским компьютером 1 и сервером 3 из примера, приведенного на рисунке 1.2. При этом получаемые значения пропускной способности будут изменяться при одних и тех же условиях работы сети в зависимости от того, между какими двумя точками производятся измерения. Так как в сети одновременно работает большое число пользовательских компьютеров и серверов, то полную характеристику пропускной способности сети дает набор пропускных способностей, измеренных для различных сочетаний взаимодействующих компьютеров - так называемая матрица трафика узлов сети. Существуют специальные средства измерения, которые фиксируют матрицу трафика для каждого узла сети.

Так как в сетях данные на пути до узла назначения обычно проходят через несколько транзитных промежуточных  этапов обработки, то в качестве критерия эффективности может рассматриваться  пропускная способность отдельного промежуточного элемента сети - отдельного канала, сегмента или коммуникационного  устройства.

Знание общей пропускной способности между двумя узлами не может дать полной информации о  возможных путях ее повышения, так  как из общей цифры нельзя понять, какой из промежуточных этапов обработки  пакетов в наибольшей степени  тормозит работу сети. Поэтому данные о пропускной способности отдельных элементов сети могут быть полезны для принятия решения о способах ее оптимизации.

В рассматриваемом примере  пакеты на пути от клиентского компьютера 1 до сервера 3 проходят через следующие  промежуточные элементы сети:

Сегмент АR КоммутаторR Сегмент ВR МаршрутизаторR Сегмент СR ПовторительR Сегмент D.

Каждый из этих элементов  обладает определенной пропускной способностью, поэтому общая пропускная способность  сети между компьютером 1 и сервером 3 будет равна минимальной из пропускных способностей составляющих маршрута, а задержка передачи одного пакета (один из вариантов определения времени  реакции) будет равна сумме задержек, вносимых каждым элементом. Для повышения  пропускной способности составного пути необхдимо в первую очередь обратить внимание на самые медленные элементы - в данном случае таким элементом скорее всего будет маршрутизатор.

Имеет смысл определить общую  пропускную способность сети как  среднее количество информации, переданной между всеми узлами сети в единицу  времени. Общая пропускная способность сети может измеряться как в пакетах в секунду, так и в битах в секунду. При делении сети на сегменты или подсети общая пропускная способность сети равна сумме пропускных способностей подсетей плюс пропускная способность межсегментных или межсетевых связей.

1.2.3. Показатели  надежности и отказоустойчивости

Важнейшей характеристикой  вычислительной сети является надежность - способность правильно функционировать  в течение продолжительного периода  времени. Это свойство имеет три  составляющих: собственно надежность, готовность и удобство обслуживания.

Повышение надежности заключается  в предотвращении неисправностей, отказов  и сбоев за счет применения электронных  схем и компонентов с высокой  степенью интеграции, снижения уровня помех, облегченных режимов работы схем, обеспечения тепловых режимов  их работы, а также за счет совершенствования  методов сборки аппаратуры. Надежность измеряется интенсивностью отказов и средним временем наработки на отказ. Надежность сетей как распределенных систем во многом определяется надежностью кабельных систем и коммутационной аппаратуры - разъемов, кроссовых панелей, коммутационных шкафов и т.п., обеспечивающих собственно электрическую или оптическую связность отдельных узлов между собой.

Повышение готовности предполагает подавление в определенных пределах влияния отказов и сбоев на работу системы с помощью средств контроля и коррекции ошибок, а также средств автоматического восстановления циркуляции информации в сети после обнаружения неисправности. Повышение готовности представляет собой борьбу за снижение времени простоя системы.

Критерием оценки готовности является коэффициент готовности, который равен доле времени пребывания системы в работоспособном состоянии и может интерпретироваться как вероятность нахождения системы в работоспособном состоянии. Коэффициент готовности вычисляется как отношение среднего времени наработки на отказ к сумме этой же величины и среднего времени восстановления. Системы с высокой готовностью называют также отказоустойчивыми.

Основным способом повышения  готовности является избыточность, на основе которой реализуются различные  варианты отказоустойчивых архитектур. Вычислительные сети включают большое  количество элементов различных  типов, и для обеспечения отказоустойчивости необходима избыточность по каждому  из ключевых элементов сети. Если рассматривать  сеть только как транспортную систему, то избыточность должна существовать для всех магистральных маршрутов  сети, то есть маршрутов, являющихся общими для большого количества клиентов сети. Такими маршрутами обычно являются маршруты к корпоративным серверам - серверам баз данных, Web-серверам, почтовым серверам и т.п. Поэтому для организации отказоустойчивой работы все элементы сети, через которые проходят такие маршруты, должны быть зарезервированы: должны иметься резервные кабельные связи, которыми можно воспользоваться при отказе одного из основных кабелей, все коммуникационные устройства на магистральных путях должны либо сами быть реализованы по отказоустойчивой схеме с резевированием всех основных своих компонентов, либо для каждого коммуникационного устройства должно иметься резервное аналогичное устройство.

Переход с основной связи  на резервную или с основного устройства на резервное может происходить как в автоматическом режиме, так и вручную, при участии администратора. Очевидно, что автоматический переход повышает коэффициент готовности системы, так как время простоя сети в этом случае будет существенно меньше, чем при вмешательстве человека. Для выполнения автоматических процедур реконфигурации необходимо иметь в сети интеллектуальные коммуникационные устройства, а также централизованную систему управления, помогающую устройствам распознавать отказы в сети и адекватно на них реагировать.

Высокую степень готовности сети можно обеспечить в том случае, когда процедуры тестирования работоспособности  элементов сети и перехода на резервные  элементы встроены в коммуникационные протоколы. Примером такого типа протоколов может служить протокол FDDI, в котором  постоянно тестируются физические связи между узлами и концентраторами  сети, а в случае их отказа выполняется  автоматическая реконфигурация связей за счет вторичного резервного кольца. Существуют и специальные протоколы, поддерживающие отказоустойчивость сети, например, протокол SpanningTree, выполняющий автоматический переход на резервные связи в сети, построенной на основе мостов и коммутаторов.

Существуют различные  градации отказоустойчивых компьютерных систем, к которым относятся и  вычислительные сети. Приведем несколько  общепринятых определений:

  • высокая готовность (highavailability) - характеризует системы, выполненные по обычной компьютерной технологии, использующие избыточные аппаратные и программные средства и допускающие время восстановления в интервале от 2 до 20 минут;
  • устойчивость к отказам (faulttolerance) - характеристика таких систем, которые имеют в горячем резерве избыточную аппаратуру для всех функциональных блоков, включая процессоры, источники питания, подсистемы ввода/вывода, подсистемы дисковой памяти, причем время восстановления при отказе не превышает одной секунды;
  • непрерывная готовность (continuousavailability) - это свойство систем, которые также обеспечивают время восстановления в пределах одной секунды, но в отличие от систем устойчивых к отказам, системы непрерывной готовности устраняют не только простои, возникшие в результате отказов, но и плановые простои, связанные с модернизацией или обслуживанием системы. Все эти работы проводятся в режиме online. Дополнительным требованием к системам непрерывной готовности является отсутствие деградации, то есть система должна поддерживать постоянный уровень функциональных возможностей и производительности независимо от возникновения отказов.

Информация о работе Оптимизация локальных сетей