Автор работы: Пользователь скрыл имя, 09 Января 2014 в 22:52, реферат
чрезвычайно актуально создание методов безвредной диагностики, позволяющей судить о функционировании органов человека и обнаруживать их дисфункцию на самых ранних стадиях заболевания. Недопустимо, чтобы патология обнаруживалась на столь поздних стадиях, когда человек уже обречен или единственное показание – тяжелая операция. И такие методы превентивной медицины уже развиваются. Они основываются на достижениях радиоэлектроники и информатики. Подтверждением этому служат разработки специалистов в области магнитокардиографии и термографии.
1. Электроника и медицинская техника. Перспективы развития…………………1 стр.
1.1. Общие понятия и необходимость в дальнейших разработках……………………..1 стр.
1.2. Компьютеры и современная медицинская техника ………………………………...5 стр.
1.3. Ультразвуковые исследования в медицине …………………………………………5 стр.
1.4. Современные тенденции магнитного резонанса в медицине………………………6 стр.
1.5. Некоторые аспекты программной реализации компьютеризированного
комплекса пульсовой диагностики и диагностики Биопотенциалов
человеческого организма……………………..……………………………………….7 стр.
1.6. Перспективы применения компьютерной томографии в диагностике сложно доступных внутренних органов………………………………………………………8 стр.
1.7. Радиоэлектроника в современной стоматологии …………………………….……9 стр.
1.8. Применение цифровых технологий и ведение учетных записей пациентов ……10стр.
2. Развитие Радиоэлектроники в медицине на примере: Влияния
Ультразвука на организм …………………………………………………………10 стр.
2.1. Применение и измерение ультразвука...……………………………………………..11 стр.
2.2. Эхо-имульсивные методы визуализации и измерений ……………………………11 стр.
2.3. Области применения эхо-импульсных методов …………………………………..11 стр.
2.3.1. Акушерство …………………………………………………………………………11 стр.
2.3.2. Офтольмология………………………………………………………………………12стр.
2.3.3. Исследование внутренних органов ………………………………………………..12 стр.
2.3.4. Приповерхностные и наружные органы …………………………………………13 стр.
2.3.5. Кардиология ………………………………………………………………………13 стр.
2.3.6. Неврология …………………………………………………………………………13 стр.
2.3.7. Применение ультразвука в терапии и хирургии ………………………………..14 стр.
3. Оценка безопасности применения ультразвука в медицине ... …..………………….15 стр.
4. хирургическому лечению;
5. трансплантатам;
6. назначавшимся лекарственным средствам;
7. посещениям врачей.
В систему "Dent Card" входят: персональные чип-карты для врачей и пациентов (карты с микросхемами памяти 256 МБ), устройство чтения/записи, оборудование персонализации – дисплей, процессор, клавиатура, принтер.
Возможности системы "Dent Card": работа регистратуры по заполнению карты пациента, информация об общем статусе пациента, регистрация операций и учета расхода при их проведении материалов и медикаментов, оформление нарядов для зуботехнической лаборатории.
Структура системы "Dent Card" следующая: программа состоит из 7 разделов. Для удобства использования на «рабочем столе» они представлены в виде папок:
Система "Dent Card" рассчитана на не
владеющих компьютером
Использование "Dent Card" дает возможность автоматизировать сделки между медицинским учреждением и страховой компанией. В перспективе возможна модернизация обмена информации между стоматологическими клиниками – сбор, хранение, обработка. Кроме того, компьютерная система "Dent Card" отвечает большинству требований работы современной российской стоматологической клиники и поможет решить многие административные задачи, что значительно улучшит качество лечебного процесса и снизит расходы на его осуществление.
2. Развитие Радиоэлектроники в медицине на примере: Влияния Ультразвука на организм.
Давно известно, что ультразвуковое излучение можно сделать узконаправленным. Французский физик Поль Ланжевен впервые заметил повреждающее действие ультразвукового излучения на живые организмы. Результаты его наблюдений, а также сведения о том, что ультразвуковые волны могут проникать сквозь мягкие ткани человеческого организма, привели к тому, что с начала 1930-х гг. возник большой интерес к проблеме применения ультразвука для терапии различных заболеваний. Этот интерес не ослабевал и в дальнейшем, причем развитие медицинских приложений шло по самым различным направлениям; особенно широко ультразвук стал применяться в физиотерапии. Тем не менее, лишь сравнительно недавно стал намечаться истинно научный подход к анализу явлений, возникающих при взаимодействии ультразвукового излучения с биологической средой.
С применением ультразвука в медицине связано множество разных аспектов. Однако, при этом физика явления должна включать следующие процессы: распространение ультразвука в «биологической среде», такой как тело человека, взаимодействие ультразвука с компонентами этой среды и измерения и регистрация акустического излучения, как падающего на объект, так и возникающего в результате взаимодействия с ними.
Проблема интерпретации взаимодействия акустического излучения с биологической средой существенно упрощается, если последнюю рассматривать не как твердое тело, а как жидкость. В такой среде нет сдвиговых волн, поэтому теория распространения волн проще, чем для твердого тела. В диапазоне ультразвуковых частот, применяемых в медицинской акустике, это предположение справедливо почти для всех тканей тела, хотя имеются и исключения, например кость. То, что взаимодействие ультразвука с тканью можно смоделировать его взаимодействием с жидкостями, - важный фактор, повышающий практическую ценность медицинской ультразвуковой диагностики.
2.1 Применение и измерение ультразвука.
В медицинских или биологических приложениях необходимость в приеме и измерении ультразвука возникает в трех обширных областях. Это получение диагностической информации от пациента, измерение акустических полей, которыми могут облучаться живые клетки и ткани, в том числе и ткани пациентов.
Ультразвук по определению не воспринимается непосредственно органами чувств человека, и поэтому необходимо использовать какой-то физический эффект или последовательность таких эффектов, чтобы действие ультразвука могло проявиться, причем главным образом количественно. Таким образом, выбор метода для конкретной задачи производится сточки зрения удобства его применения, а также точности измерения интересующего параметра акустического поля.
2.2 Эхо-имульсивные методы визуализации и измерений.
Методы ультразвуковой эхо-импульсной визуализации уже нашли широкое и разнообразное применение в медицине.
Основным элементом любой
Приемник представляет собой своего рода систему сопряжения между преобразователем и дисплеем или системой записи, которые применяются для передачи наблюдателю информации, полученной с помощью ультразвука. В хороших системах эхо-сигналы на выходе преобразователя имеют большой динамический диапазон.
2.3 Области применения эхо-импульсных методов.
Эхо-импульсные методы в настоящее время стали широко применятся во многих областях медицины.
2.3.1 АКУШЕРСТВО
Акушерство – та область
медицины, где эхо-импульсивные ультразвуковые
методы наиболее прочно укоренились
как составная часть
2.3.2 ОФТАЛЬМОЛОГИЯ
Может быть, из-за относительно малых размеров глаза офтальмология несколько выделилась из прочих областей применения ультразвука.
Ультразвук особенно удобен для точного определения размеров глаза, а также для исследования патологии и аномалий структур глаза в случае их непрозрачности и, следовательно, недоступности для обычного оптического исследования. Здесь также важна точность работы и калибровки аппаратуры, необходимо также уделить особое внимание эффектам, связанным с преломлением ультразвука в хрусталике и роговице.
Область позади глаза – орбита – доступна ультразвуковому обследованию через глаз, поэтому ультразвук вместе с компьютерной томографией стал одним из основных методов неинвазивного исследования патологий этой области. Структуры орбиты имеют малые размеры и требуют хорошего пространственного разрешения и разрешения по контрасту, что достижимо на высоких частотах. Практические сложности могут возникать, однако, если пытаться использовать аппаратуру, характеристики которой заимствованы из телевизионной техники, а полоса пропускания соответственно ограничена.
2.3.3 ИССЛЕДОВАНИЕ ВНУТРЕННИХ
Под таким заголовком можно рассмотреть множество разнообразных задач, в основном связанных с исследованием брюшной полости, где ультразвук используется для обнаружения и распознавания аномалий анатомических структур и тканей. Зачастую задача такова: есть подозрение на злокачественное образование и необходимо отличить его от доброкачественных или инфекционных по своей природе образований.
При исследовании печени кроме важной задачи обнаружения вторичных злокачественных образований ультразвук полезен для решения других задач, включая обнаружение заболеваний и непроходимости желчных протоков, исследования желчного пузыря с целью обнаружения камней и других патологий, исследование цирроза и других доброкачественных диффузных заболеваний печени, а также паразитарных заболеваний, таких как шистосоматоз. Почки – еще один орган, в котором необходимо исследовать различные злокачественные и доброкачественные состояния (включая жизнеспособность после трансплантации) с помощью ультразвука. Гинекологические исследования, в том числе исследования матки и яичников, в течение долгого времени являются главным направлением успешного применения ультразвука. Здесь зачастую также необходима дифференциация злокачественных и доброкачественных образований, что обычно требует наилучшего пространственного и контрастного разрешения. Аналогичные заключения применимы и к исследованию многих других внутренних органов и областей. Возрастает интерес к применению ультразвуковых эндоскопических зондов. Эти устройства, которые можно вводить в естественные полости тела при обследовании или применять при хирургическом вмешательстве, позволяют улучшить качество изображения из-за более высокой рабочей частоты и/или отсутствия на пути ультразвука таких неблагоприятных акустических сред, как газ или кость.
Щитовидная и молочная железы, хотя и легко доступны ультразвуковому обследованию, часто требуют использования водяного и ионного буфера, чтобы на изображение не повлияли аномалии ближней зоны поля. При исследовании щитовидной и паращитовидной железе основное применение ультразвука – различение кистозных и твердых образований, что возможно при хорошем подавлении шума и артефактов, вызванных реверберацией и боковыми лепестками излучения.
Захватывающая перспектива – скрининг для выявления самых разных признаков рака молочной железы при отсутствии выраженных симптомов, особенно у женщин с аномально высоким фактором риска. Технически здесь необходимо обнаружить аномалию размеров около 2мм в диаметре, когда эта аномалия относительно редко встречается в заданной группе, например, будет только у одной пациентке.
Методы визуализации молочной и щитовидной желез, часто использующие акустическую задержку распространения, применимы также к обследованию других приповерхностных тканей, например, при измерении толщины кожи, необходимо в радиационной терапии для облучения электронами, при обследовании приповерхностных кровеносных сосудов, таких как сонная артерия, а также при исследовании реакции опухолей на терапевтические воздействия.
2.3.5. КАРДИОЛОГИЯ
Ультразвуковые методы широко применяются при обследовании сердца и прилегающих магистральных сосудов. Это связано, в частности, с возможностью быстрого получения пространственной информации, а также возможностью ее объединения с томографической визуализацией. Так, для обнаружения и распознавания аномалий движения клапанов сердца, в частности митрального, очень широко используется М-режим. При этом важно регистрировать движение клапанов вплоть до частот порядка 50Гц и, следовательно, с частотой повторения около 100Гц. Эта цифра, оставаясь значительно ниже упомянутого выше придела для эхо-импульсных приборов (около 5кГц), в сущности, недостижима при любых других методах исследования.
До появления рентгеновской компьютерной томографии мозг было особенно сложно исследовать. Начиная с 1951г., в Лондонском королевском онкологическом госпитале предпринимались значительные усилия для применения ультразвука к этой задаче.
К сожалению, этому мешают физические свойства черепа взрослого человека, поскольку череп представляет собой сильно поглощающую трехслойною структуру переменной толщины.
Хотя было сделано несколько
интересных попыток преодолеть эти
трудности, в том числе с использованием
управляемых многоэлементных