Автор работы: Пользователь скрыл имя, 23 Апреля 2014 в 14:03, дипломная работа
В данной работе рассматривается вопрос разработки приемо-передающего радиокомплекса для стратосферной высотной платформы, который представляет собой огромный ретранслятор, по сравнению с которым возможности ИСЗ существенно скромнее. На дирижабле предусматривается размещение, кроме другого оборудования, мощных коммутаторов АТМ для организации IP- речевого видеотрафика. Рассматривается также возможность организации мобильной видеосвязи.
Один дирижабль способен обслуживать территорию диаметром свыше 500 км. Мобильным абонентам будет доступна передача цифровой телефонии, факсимильных сообщений и электронной почты со скоростью 64 кбит/с. Причем число одновременно пользующихся оборудованием связи одного дирижабля составит 400 тысяч!
Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1. Приемо-передающие радиокомплексы (ППР) . . . . . . . . . . . . . . 6
1.1. Назначение и основные функции ППР . . . . . . . . . . . . . . . . . 7
1.2. Структура ППР . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3. Основное оборудование ППР . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1. Приемники . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2. Передатчики . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.3. Антенны . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.4. Основные требования к ППР . . . . . . . . . . . . . . . . . . 25
2. Технологическая часть . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1. Технология стратосферной связи на СВЧ . . . . . . . . . . . . 30
2.2. Частотное планирование ближней зоны . . . . . . . . . . . . . 34
2.3. Методы модуляций для ближней зоны . . . . . . . . . . . . . . . . 38
3. Расчетная часть . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1. Расчет нисходящего канала связи на частоте 47,5 ГГц . . . . . . 41
3.2. Расчет восходящего канала связи на частоте 48,2 ГГц . . . . . 44
3.3. Расчет и выбор антенн для высотной платформы . . . . . . . . . 47
3.4. Расчет и выбор антенн для стационарного абонента . . . . . . . . . 51
3.5. Структура ППР . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
доступа DSL.
802.16-2005 (известен также как 802.16e и мобильный WiMAX). Спецификация утверждена в 2005 году. Это — новый виток развития технологии фиксированного доступа (802.16d). Оптимизированная для поддержки мобильных пользователей версия поддерживает ряд специфических функций, таких как хэндовер и роуминг. Применяется масштабируемый OFDM-доступ (SOFDMA), возможна работа при наличии либо отсутствии прямой видимости. Планируемые частотные диапазоны для сетей Mobile WiMAX таковы: 2,3; 2,5; 3,4–3,8 ГГц. В мире реализованы несколько пилотных проектов, а недавно оператор Sprint анонсировал старт проекта национального масштаба. Конкурентами 802.16e являются все мобильные технологии третьего поколения (например, EV-DO, HSXPA).
Метод WirelessMAN-SC стандарта IEEE 802.16 описывает работу в диапазоне 10-66 ГГц сетей с архитектурой точка-многоточка (из центра – многим). Это двунаправленная система , т.е. предусмотрены нисходящий и восходящий потоки. При этом каналы подразумевается широкополосные (до 25-28 МГц), а скорость передачи-высокие (например, 120 Мбит/с.)
Канальное кодирование
Тракт обработки данных и формирование выходного сигнала для передачи через радиоканал в стандарте IEEE 802.16 достаточно обычен для современных телекоммуникационных протоколов (рис. ) и практически одинаков для нисходящих и восходящих соединений.
Рис. Тракт формирования выходного сигнала в стандарте IEEE 802.16
Рис. Структурная схема приемника и передатчика
Входной поток данных скремблируется. Далее скремблированные данные защищают посредством помехоустойчивых кодов ( FEC-кодирование). Метод WirelessMAN-SC предусматривает схему модуляцией одной несущей в каждом частотном канале. Допускается три типа квадратурной амплитудной модуляции? 4-позиционная GPSK , 16-позиционная QAM (обязательно для всех устройств), а также 64- QAM (опционально). Кодированные блоки данных преобразуется в модуляционные символы (каждые 2/4/6 бит определяют один символ GPSK/ 16- QAM /64- QAM) в соответствии с приведенными в стандарте таблицами – каждой группе из 2/4/6 бит ставится в соответствие синфазная (I) квадратурная (O) координаты. Далее последовательность дискретных значений в каналах I и Q преобразуется посредством так называемого синусквадратного фильтра в непрерывные (сглаженные) сигналы.
Рис. Схемы кодирования BPSK, QPSK и QAM 16
Режим WirelessMAN- OFDM
Режим OFDM - это метод модуляции потока данных в одном частотном канале (шириной 1-2 МГц и более) с центральной частотой fc . Деление же на каналы, как и в случае SC-частотное. Но для модуляция данных посредством ортогональных в частотном канале выделяются N поднесущих так, что
где k-целое число из диапазона 1- N
Расстояние между ортогональными несущими , где Tb - длительность передачи данных.
Кроме данных, в OFDM-символе передается защитный интервал длительностью Tg , так что общая длительность OFDM-символа (рис. )
Защитный интервал представляет собой копию оконечного фрагмента символа. Его длительность Tg может составлять 1/4, 1/8, 1/16 и 1/32 от Tb.
Рис. OFDM-символ
В соответствии с первым принципом OFDM каждая поднесущая модулируется независимо посредством квадратурной амплитудной модуляции. Общий сигнал вычисляется посредством обратного преобразования Фурье (БПФ).
Для работы алгоритмов БПФ удобно, чтобы число точек соответствовала 2m. Поэтому число несущих выбирают равным минимальному числу NFFT = 2m, превосходящему N. В режим OFDM стандарта IEEE 802.16 N = 200, соответственно NFFT=256. Из них 55 (k= -128....-101 и 101 . . . 127) образует защитный интервал на границах частотного диапазона канала. Центральнач частота канала (k=0) и частоты защитных интервалов не используется (т.е. амплитуды соответствующих им сигналов равны нулю). Оставшуюся 200 несущих информационные.
В соответствии со вторым принципом OFDM для точного определения параметров канала необходимы так называемые пилотные несущие частоты, метод модуляции и передаваемый сигнал в которых хорошо известен всем станциям. В методе OFDM предусмотрено использование восьми пилотных частот (с индексами 88, 63, 38, 13 с разными знаками). Оставшиеся 192 несущие разбиты на 16 подканалов по 12 несущих к каждом, причем в одном подканале частоты расположены не подряд. Например, подканал 1 составляют несущие с индексами
-100, -99, -98, -37, -36, -35, 1,2,3,64,65,66. Деление на подканалы необходимо, поскольку в режиме WirelessMAN- OFDM предусмотрена (опционально) возможность работы не во всех 16, а водном, двух, четырех и восьми подканалах - некий прообраз схемы множественного доступа OFDMA. Для этого каждый подканал и каждая группа подканалов имеет свой индекс (от 0 до 31)
При частотном разделении каналов необходимо, чтобы ширина отдельного канала была, с одной стороны, достаточно узкой для минимизации искажения сигнала в пределах отдельного канала, а с другой — достаточно широкой для обеспечения требуемой скорости передачи. Кроме того, для экономного использования всей полосы канала, разделяемого на подканалы, желательно как можно более плотно расположить частотные подканалы, но при этом избежать межканальной интерференции, чтобы обеспечить полную независимость каналов друг от друга. Частотные каналы, удовлетворяющие перечисленным требованиям, называются ортогональными. Несущие сигналы всех частотных подканалов (а точнее, функции, описывающие эти сигналы) ортогональны друг другу.
Важно, что хотя сами частотные подканалы могут частично перекрывать друг друга, ортогональность несущих сигналов гарантирует частотную независимость каналов друг от друга, а, следовательно, и отсутствие межканальной интерференции (рис. 3).
Рис. 3. Пример перекрывающихся частотных каналов с ортогональными несущими. |
Рассмотренный способ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (OFDM). Одним из ключевых преимуществ метода OFDM является сочетание высокой скорости передачи с эффективным противостоянием многолучевому распространению. Если говорить точнее, то сама по себе технология OFDM не устраняет многолучевого распространения, но создает предпосылки для устранения эффекта межсимвольной интерференции. Дело в том, что неотъемлемой частью технологии OFDM является охранный интервал (Guard Interval, GI) — циклическое повторение окончания символа, пристраиваемое в начале символа (рис. 4).
Рис. 4. Охранный интервал GI. |
Охранный интервал является избыточной информацией и в этом смысле снижает полезную (информационную) скорость передачи, но именно он служит защитой от возникновения межсимвольной интерференции. Эта избыточная информация добавляется к передаваемому символу в передатчике и отбрасывается при приеме символа в приемнике.
При использовании технологии OFDM длительность охранного интервала составляет одну четвертую длительности самого символа. При этом сам символ имеет длительность 3,2 мкс, а охранный интервал — 0,8 мкс. Таким образом, длительность символа вместе с охранным интервалом составляет 4 мкс.
Основные стандарты сотовой связи в настоящее время развивались так называемые 4G, высокой пропускной способностью и низкой латентностью, все IP-сетей с голосовыми услугами построены на вершине. Во всем мире перейти на 4G для GSM/UMTS и AMPS/TIA (включая CDMA2000) является 3GPP Long Term Evolution усилий. Для 4G систем, существующих интерфейсов воздуха, выбрасываемых в пользу OFDMA по нисходящей и различные OFDM методик по Uplink, похожие на WiMAX.
Пилотные несущие модулируются посредством BPSK.
После определения модуляционных символов посредством ОБПФ вычисляется сам радиосигнал и передается в передатчик. При приеме все процедуры производят в обратном порядке. В режиме OFDM на физическом уровне для сетей с архитектурой "точка6многоточка" кадровая структура передачи принципиально мало чем отличается от режима SC. Так же как и в высокочастотной области, информационный обмен происходит посредством последовательности кадров (фреймов). Каждый фрейм (рис.6) делится на два субкадра – нисходящий (DL – от БС к АС) и восходящий (UL – от АС к БС). Разделение на восходящий и нисходящий каналы – как временное (TDD), так и частотное (FDD). В последнем случае DL и UL транслируются одновременно, в разных частотных диапазонах.
Нисходящий субкадр включает преамбулу, управляющий заголовок кадра (FCH – frame control header) и последовательность пакетов данных. Преамбула в нисходящем канале – посылка из двух OFDM6символов (длинная преамбула), предназначенная для синхронизации. Первый OFDM6символ использует несущие с индексами, кратными 4, второй – только четные несущие (модуляция – QPSK).
За преамбулой следует управляющий заголовок кадра – один OFDM6символ с модуляцией BPSK и стандартной схемой кодирования (скорость кодирования – 1/2). Он содержит так называемый префикс кадра нисходящего канала (DLFP – Downlink Frame Prefix), который описывает профиль и длину первого (или нескольких начальных) пакета в DL6субкадре.
В первый пакет входят широковещательные сообщения (предназначенные всем АС) – карты расположения пакетов DL-MAP, UL-MAP, дескрипторы нисходящего/восходящего каналов DCD/UCD, другая служебная информация. Каждый пакет обладает своим профилем (схема кодирования, модуляция и т.д.) и передается по средством целого числа OFDM6символов. Точки начала и профили всех пакетов, помимо первого, содержатся в DL-MAP.
Рис. 11 – Структура OFDM-кадров при временном дуплексировании.
Далее следуют временные интервалы, назначенные базовой станцией определенным абонентским станциям для передачи. Распределение этих интервалов (точки начала) содержится в сообщении UL-MAP. АС в своем временном интервале начинает трансляцию с передачи короткой преамбулы (один OFDM6символ, использует только четные несущие). За ним следует собственно информационный пакет, сформированный на МАС уровне.
Длительность OFDM-кадров может составлять 2,5; 4; 5; 8; 10; 12,5; и 20 мс. Заданный базовой станцией, период построения кадров не может изменяться, поскольку в этом случае потребуется ресинхронизация всех АС.
Запрос на установление соединения не отличается от общепринятого в стандарте IEEE 802.16, за исключением дополнительного режима "концентрированного" запроса (Region-Focused). Он предназначен только для станций, способных работать с отдельными субканалами. В этом режиме в интервалах конкурентного доступа (заданных в UL-MAP) АС может передать короткий 46разрядный код на одном из 48 субканалов, каждый из которых включает четыре несущих. Всего предусмотрено восемь кодов. Таблица кодов и подканалов приведена в тексте стандарта IEEE 802.16. Код и номера канала АС выбирает случайным образом.
Получив кодовое сообщение, БС предоставляет АС интервал для передачи "обычного" запроса на предоставление доступа (заголовка запроса МАС6уровня) – если это возможно. Однако в отличие от других механизмов, БС в UL6MAP не указывает идентификатор запросившей ее станции, а приводит номера кода запроса, подканала, а также порядковый номер интервала доступа, в течение которого был передан запрос. По этим параметрам АС и определяет, что интервал для запроса полосы передачи предназначен ей. Выбор момента для передачи 46разрядного кода запроса доступа происходит случайным образом, по описанному выше алгоритму обращения к каналу конкурентного доступа
3.3 Особенности применения многостанционного доступа OFDMA
Режим WirelessMAN-OFDMA (далее – OFDMA), как следует из его названия, это метод множественного доступа посредством разделения ортогональных несущих. В отличие от рассмотренного в предыдущей публикации , речь идет уже не только о механизме модуляции, но и о способе разделения каналов. Данный механизм уже достаточно хорошо известен, в частности, он нашел широкое применение в системах цифрового телевидения DVB (наземных, кабельных и спутниковых). Один логический OFDMA-канал образован фиксированным набором несущих, как правило, распределенных по всему доступному диапазону частот физического канала. В упрощенном виде этот механизм опционально используется в режиме OFDM – вспомним разбиение канала на 16 подканалов.
С точки зрения формирования модуляционных символов OFDMA аналогичен OFDM: OFDMA-символ включает собственно зону передачи данных и предшествующий ему защитный интервал (повтор начального фрагмента символа), предназначенный для предотвращения межисмвольной интерференции). Сам символ – это совокупность модулированных ортогональных несущих. В режиме OFDMA несущих значительно больше, чем в OFDM – 2048 вместо 256, соответственно и число подканалов становится достаточным для организации работы сети: в разных режимах их от 32 до 70, по 24 или 48 информационных несущих в каждом. Используются не все 2048 несущих – около 200 нижних и 200 верхних частот составляют защитный интервал канала и не модулируются. Также не используется центральная частота канала (частота с индексом 1024). Кроме того, часть несущих – пилотные, предназначенные для служебных целей, а не для передачи информации. Точное число пилотных несущих и частот в защитных интервалах незначительно варьируется в зависимости от режимов OFDMA, описанных далее.
Системная тактовая частота всегда составляет 8/7 ширины полосы физического канала BW. Ширина физического канала не нормирована (в стандарте говорится "не менее 1 МГц), но в реальных применениях вряд ли окажутся эффективными каналы менее 5 МГц.
Метод формирования, структура OFDM-символов и механизм канального кодирования в OFDMA схожи с описанными для OFDM [2]. Канальное кодирование включает рандомизацию, помехоустойчивое кодирование, перемежение и модуляцию. Метод рандомизации практически идентичен OFDM, различны лишь способы формирования инициализирующего вектора генератора псевдослучайной последовательности (ПСП).
Помехоустойчивое кодирование в OFDMA в качестве обязательного предусматривает только сверточный кодер – такой же, как в OFDM, и с тем же набором скоростей кодирования. Кодера Рида-Соломона нет. Опционально предусмотрено применение блоковых и сверточных турбо-кодов. Метод перемежения также практически идентичен.
Информация о работе Разработка приемо-передающего радиокомплекса