Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 21:07, курсовая работа
целью предпринимаемого исследования является определение основных параметров и характеристик, а также физических процессов, лежащих в основе образования и функционирования p-n-перехода для ответа на основной вопрос данной работы: «Какова ширина p-n-перехода?» при заданных исходных параметрах.
В третьей части данной работы будет предпринята попытка объяснить особенности поведения электрона с учетом спина во внешнем электрическом поле, введено понятие тонкой структуры.
ВВЕДЕНИЕ 4
ЧАСТЬ I. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 5
1.1 Понятие о p-n-переходе 5
1.2 Структура p-n-перехода 8
1.3 Методы создания p-n-переходов 11
1.3.1 Точечные переходы 12
1.3.2 Сплавные переходы 12
1.3.3 Диффузионные переходы 13
1.3.4 Эпитаксиальные переходы 13
1.4 Энергетическая диаграмма p-n-перехода в равновесном состоянии 16
1.5 Токи через p-n-переход в равновесном состоянии 18
1.6 Методика расчета параметров p-n-перехода 20
1.7 Расчет параметров ступенчатого p-n-перехода 22
ЧАСТЬ II. РАСЧЕТ ШИРИНЫ СТУПЕНЧАТОГО P – N-ПЕРЕХОДА 24
ЧАСТЬ III. ТУННЕЛЬНЫЙ ПРОБОЙ И ЕГО ИСПОЛЬЗОВАНИЕ В КРЕМНИЕВЫХ СТАБИЛИТРОНАХ (РЕФЕРАТ) 25
ЗАКЛЮЧЕНИЕ 36
ПРИЛОЖЕНИЕ. СПИСОК ИСПОЛЬЗОВАННЫХ ОБОЗНАЧЕНИЙ 37
БИБЛИОГРАФИЧЕСКИЙ СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 38
Наиболее распространенная схема стабилизатора постоянного напряжения на кремниевом стабилитроне приведена на рис. 2.4.
Схема представляет собой делитель напряжения, состоящий из резистора и стабилитрона.
При изменении питающего напряжения напряжение на стабилитроне и соответственно на сопротивлении нагрузки изменяется незначительно, в чем и выражается стабилизирующее действие схемы. Из рисунка следует, что стабилитрон включен на обратное напряжение, которое поступает на вход схемы. С помощью резистора устанавливается рабочий режим стабилитрона, т. е. такой режим, когда при холостом ходе (отключении ) в цепи стабилитрона протекает ток , которому соответствует напряжение стабилизации (точка на рис. 2.2). Для повышения температурной стабильности работы схемы стабилизатора последовательно со стабилитроном включают в прямом направлении дополнительный диод . С повышением температуры уменьшается прямое падение напряжения на диоде , а на обратно включенном р–n-переходе стабилитрона – возрастает.
При колебаниях температуры напряжения на стабилитроне и диоде изменяются с различными знаками, так как ТКН стабилитрона положителен, а германиевого диода – отрицателен. За счет такой компенсации напряжений обеспечивается температурная стабильность схемы
Вместе с тем схема (рис. 2.4) может обеспечивать стабилизацию напряжения маломощной нагрузки с током, не превышающим 20 % тока стабилизации стабилитрона . Поэтому такая схема используется, как правило, в качестве источника опорного напряжения в других типах стабилизаторов напряжения.
Т.о. в ходе проведения курсового исследования было установлено, что наиболее широко распространены следующие типы p-n-переходов: точечные, сплавные, диффузионные и эпитаксиальные, рассмотрены особенности технологических процессов изготовления этих переходов. Опираясь на исходные данные была рассчитана максимальная проницаемость p-n-перехода, которая составила: l0=5,489845∙10-14 м. В третьей главе курсового проекта кратко изложены основные подходы к определению особенностей поведения стабилитрона при тунельнном пробое, введено понятие тунельнный пробой p-n перехода и понятие стабилитрон.
Обозначения основных величин, принятые в работе
Ec - энергия соответствующая дну запрещённой зоны
EF - фермиевская энергия
Ek - энергетическая ступень, образующаяся в p–n-переходе
Emax - максимальная напряжённость электрического поля
Ev - энергия соответствующая потолку валентной зоны
Fi - электрическая энергия
Fip (Fin) - электростатическая энергия в p (n)-области
j - плотность тока
jg0 - плотность тока термогенерации носителей заряда
jngp0 (jpgp0) - плотность дрейфового тока, текущего через p-n-переход из n-области (p-области) в p-область (n-область)
jngup0 (jpgup0) - плотность диффузионного тока, текущего через p-n-переход из n-области (p-области) в p-область (n-область)
jz0 - плотность тока рекомбинации носителей заряда
l0 - ширина р-n перехода.
ln0 (lp0) - ширина n (p) -области p-n-перехода
Ls - дебаевская длина
N - результирующая концентрация примеси
n (p) - концентрация электронов (дырок) в полупроводнике
n0 (p0) - равновесная концентрация электронов (дырок) в полупроводнике
Na (Nd) - концентрация акцепторной (донорной) примеси.
ni - собственная концентрация носителей заряда
nn (np ) - концентрация электронов в n (р) области
nno (npo) - равновесная концентрация электронов в n (р) области
NЭ (NБ) - абсолютная величина результирующей примеси в эмиттере (базе)
P(x) - распределение плотности объёмного заряда
pp (pn) - концентрация дырок в р (n) области
ppo (pno) - равновесная концентрация дырок в р (n) области
pЭ (pБ) - плотность объёмного заряда
q, e - заряд электрона
T - температура окружающей среды
Vk - энергия контактного поля
ε - напряженность электрического поля
ε - относительная диэлектрическая проницаемость полупроводника
ε0 - диэлектрическая постоянная воздуха
μn (μp) - подвижность электронов (дырок)
τε - время диэлектрической релаксации
φ - электрический потенциал
φk - контактная разность потенциалов
φT - температурный потенциал
1 Антизапирающим называют приконтактный слой, обогащённый свободными носителями заряда.
2 Отношение изменения концентрации носителей заряда к расстоянию на котором это изменение происходит называется градиентом концентрации: grad n = ?n/?x = dn/dx
3 Диффузионным током называют ток, вызванный тепловым движением электронов.
4 Ток, созданный зарядами, движущимися в полупроводнике из-за наличия электрического поля и градиента потенциала называется дрейфовым током.
5 Отсутствие вырождения характеризует существенная концентрация носителей заряда собственной электропроводности.
Информация о работе Расчет параметров ступенчатого p-n перехода