Автор работы: Пользователь скрыл имя, 09 Декабря 2012 в 09:35, курсовая работа
В техническом прогрессе ЭВМ играют значительную роль: они значительно облегчают работу человека в различных областях промышленности, инженерных исследованиях, автоматическом управлении и т.д.
Установки для пайки с двумя рабочими жидкостями оказались непригодны для линий сборки электронной аппаратуры. Поэтому в 1981 г. фирмой НТС стали выпускаться установки для пайки в ПГФ, встраиваемые в технологические сборочно-монтажные линии. Такие установки имеют относительно небольшие входное и выходное отверстия, позволяющие реализовать систему с одной технологической средой (рис. 2). Приведенная на рис. 2 конструкция обеспечивает возможность включения установки в состав технологической линии.
При использовании установки для пайки в ПГФ таких компонентов, как чип-конденсаторы и чип-резисторы, может возникнуть проблема, известная как "эффект опрокидывания компонента". Причина опрокидывания компонентов до конца не изучена, и универсальных средств для избежания этого в настоящее время не существует. Необходимо варьировать параметры процесса пайки до тех пор, пока не прекратится опрокидывание компонентов.
Лазерная пайка
Лазерная пайка (пайка лучём лазера) не относится к групповым методом пайки, поскольку монтаж ведется по каждому отдельному выводу либо по ряду выводов. Однако бесконтактность приложения тепловой энергии позволяет повысить скорость монтажа до 10 соединений в секунду и приблизиться по производительности к пайке в паровой фазе и ИК излучением
По сравнению с другими
Возможна пайка плат с высокой плотностью компоновки элементов, с размерами контактных площадок до 25 мкм, без образования перемычек на соседние соединения или их повреждения.
При использовании хорошо просушенной паяльной пасты выполненные с помощью лазерной пайки ПС не образуют шариков припоя или перемычек, в результате чего отпадает необходимость применять паяльные маски.
При использовании лазерной пайки
нет необходимости в
7. Материалы для производства печатных плат
7.1. Материалы для печатных плат
Заготовки для жестких печатных
плат представляют собой несколько
спрессованных слоев Основа: бумага, стекловолокно, керамика, арамид. Наполнитель:фенольная смола, эпоксидная смола, полиэстер, полиимидная смола, бисмалеинимид-триазин, эфир цианата, фторопласт. Существует множество |
обозначение |
состав |
температура стеклования |
диэлектрическая постоянная |
относительная стоимость |
примечание |
FR2 |
бумага и фенольная смола |
105 |
4,7 |
0,73 |
|
FR3 |
бумага и эпоксидная смола |
110 |
4,9 |
0,85 |
|
FR4 |
фольгированный эпоксидный стеклотекстолит |
135 - 170 |
4,7 |
1 |
Это наиболее распространенный материал для печатных плат. FR4 толщиной 1.6мм состоит из 8 слоев стеклоткани № 7628. Логотип производителя / обозначение класса горючести красного цвета расположен в середине (4 слой). Температура использования этого материала — 120 - 130°C. |
FR5 |
то же с уменьшенным диаметром стекловолокна |
160 |
4,6 |
1,4 |
Это стеклотекстолит подобный FR4, но
температура использования |
BT |
бисмалеинимид-триазиновая смола со стеклом |
180-220 |
3,9-4,9 |
5,3 |
|
CE |
цианат-эфир со стеклом |
230 |
3,6 |
4,5 |
|
CEM1 |
бумага с эпоксидной смолой, на которую напрессованы листы стеклоткани |
130 |
4,7 |
0,95 |
Из за бумажной основы в материале CEM1 невозможна металлизация отверстий, поэтому он применяется для односторонних плат. |
CEM3 |
стеклотекстолит, облицованный с двух сторон FR4 |
130 |
5,2 |
0,95 |
CEM3 наиболее похож на FR4. Материал легко сверлится и штампуется. Это полная замена FR4 и у этого материала очень большой рынок в Японии. |
PD |
полиимидная смола |
260 |
4,2-4,6 |
6,5 |
|
PTFE |
фторопласт |
240-280 |
2,2-10,2 |
32-78 |
|
CHn |
смесь гидрокарбоната и керамики |
300 |
4,5-9,8 |
90 |
7.2. Диэлектрические свойства стеклотекстолита
При проектировании печатных плат необходимо
учитывать диэлектрические Диэлектрическая постоянная (проницаемость) - отношение емкости конденсатора, где в качестве диэлектрика используется испытываемый материал, к емкости такого же воздушного конденсатора. Она существенно зависит от типа вещества и от внешних условий (температуры, давления, влажности и частоты).
Эту характеристику необходимо учитывать (особенно для высокочастотных пп) по той причине, что высокое быстродействие современных пп предъявляет особые требования к таким параметрам, как время задержки сигналов и емкость. Скорость передачи сигналов в проводниках зависит главным образом от диэлектрической проницаемости. Ее значения для современных диэлектриков для печатных плат лежат в пределах 2,2 - 10,2. Задержка сигнала в линии может превышать 6 нс/м. Так же задержка увеличивается с
увеличением частоты Тангенс угла диэлектрических потерь в изоляционных материалах определяется отношением общих потерь мощности в материале к произведению напряжения и тока в конденсаторе, в котором исследуемый материал работает в качестве диэлектрика. Диэлектрические потери обусловлены нагревом диэлектрика. Их составляющими являются потери на электропроводность, поляризацию диэлектрика, резонансные потери (при частотах, совпадающих с собственными частотами колебаний электронов и ионов), потери, обусловленные неоднородностью (слоистостью, проводящими и газовыми включениями). Чем меньше тангенс угла потерь, тем высококачественее радиоэлемент. Обычно через тангенс угла потерь характеризуют добротность конденсаторов. Использование диэлектриков с улучшенными диэлектрическими параметрами дает незначительный выигрыш в задержке. Поэтому в общем случае задержка зависит от длины печатных проводников. В высокочастотных печатных платах из-за разной длины проводников в конечные точки сигнал приходит в разное время и в разной фазе. Чтобы этого избежать, форму проводника корректируются таким образом, чтобы их длина была одинаковой.
Часто
на печатной плате выполняются |
|
|
Так же при проектировании печатных плат мы вынуждены считаться с полным сопротивлением, возникающим между проводниками и "землей". Ниже приведены значения сопротивлений для двухсторонних печатных плат с разными значениями ширины проводника и толщины диэлектрика. |
Полные сопротивления, Ом (толщина меди 35 мкм, диэлектрическая проницаемость 4,5)
толщина стеклотекстолита, мкм | |||
ширина проводника, мкм |
100 |
250 |
460 |
300 |
33,2 |
57,7 |
77,2 |
200 |
41,7 |
68,1 |
88,2 |
150 |
47,9 |
75,3 |
95,6 |
120 |
52,8 |
80,6 |
101,0 |
7.3. Механические свойства стеклотекстолита
Подложка является основой для крепления элементов печатной платы, в свою очередь сама плата закрепляется в корпусе прибора. Поэтому материалы для ПП должны обладать определенной несщей способностью и прочностью, а так же обеспечивать качественное крепление в корпус прибора. |
Прочность на изгиб - это разрушающее усилие для бруска, закрепленного на концах и нагруженного в центре. Ниже приведены значения прочности на изгиб (кг/см2) для некоторых видов материалов. |
|
Материал | |||
FR3 |
FR4 |
FR5 | |
прочность вдоль волокон |
|||
при толщине 1,5 мм |
1400 |
3850 |
3850 |
при толщине 3 мм |
1400 |
3500 |
3500 |
прочность поперек волокон |
|||
при толщине 1,5 мм |
1100 |
3150 |
3150 |
при толщине 3 мм |
1100 |
2800 |
2800 |
Деформация под нагрузкой - процентное
изменение толщины при |
Материал | |||
FR3 |
FR4 |
FR5 | |
изменение толщины, % |
1,50 |
0,25 |
0,1 |
Модуль эластичности при изгибе может быть определен для сжимающих, изгибающих и разрывающих нагрузок. Модуль упругости - это отношение (в пределах упругости материала) действующего усилия к соответствующей величине деформации. Предел упругости - самое большое растягивающее напряжение, которое выдерживает материал без остаточной деформации. Напряжение - усилие на единицу площади
первоначального поперечного Растяжение - отношение удлинения к первоначальной длине, т.е. безразмерная величина, определяющая изменение длины на единицу первоначальной длины. |
Материал | |||
Модуль эластичности, кг/см2 |
FR3 |
FR4 |
FR5 |
вдоль волокон |
91000 |
188000 |
196000 |
поперек волокон |
70000 |
154000 |
161000 |
7.4. Температура стеклования
Наиболее часто употребляемые материалы для печатных плат созданы на основе стекловолокна с полимерным наполнителем. Это обусловлено прежде всего размерной устойчивостью стеклянного волокна в широком диапазоне температур, а так же большой механической прочностью и нагревостойкостью. Область применения таких материалов ограничена температурой стеклования Tg. При низких температурах движение молекул в полимерах происходит медленно или почти отсутствует, так что аморфный полимер хрупок и тверд, как стекло, жесткий и труднорастворимый. Нагревание ускоряет движение молекул, поэтому по мере повышения температуры материал из твердого и хрупкого превращается в достаточно мягкий и пластичный. Температура такого перехода называется температурой стеклования. Она тем выше, чем выше степень полимеризации полимера. Температура стеклования для полимеров в силу неоднородности их состава не имеет какого-то конкретного значения. Обычно под температурой стеклования подразумевают интервал температур (например, 135 - 170 градусов для FR4). Температура стеклования - это не температура плавления, при которой материал переходит в жидкое состояние. Так как при достижении Tg полимер становится пластичным, то он уже не может обеспечить размерную точность печатной платы и ее элементов. В производстве печатных плат широко используется стеклотекстолит (ГОСТ 26246.5-89). Это упругий, износостойкий, высокоомный слоистый пластик на основе стеклоткани и полимерного связующего. Стеклоткань формируют из расплавленной стекломассы вытягиванием через фильтры (непрерывное волокно длиной более 20 км и диаметром 3 - 100 мкм) или разделением струи расплавленного стекла паром, воздухом и др. (штапельное волокно длиной 1 - 50 см и диаметром 0,1 - 20 мкм). Обладает высокой теплостойкостью, химической стойкостью, высокими диэлектрическими свойствами, механической прочностью, низкой теплопроводностью и малым коэффициентом термического расширения. Недостатки: хрупкость, низкая износостойкость, плохая адгезия. |