Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 20:53, реферат
Мы живём в мире света и созданных им изображений. Солнечный свет былначалом жизни и колыбелью Человека на Земле. Сознание человека стало определяться его образным мышлением. Природный свет, рождённый солнцем, создал для нас огромный мир ощущений и дал нам возможность определить своё
отношение к окружающему нас миру, а свет искусственный стал началом человеческой цивилизации. Сегодня электрический свет определяет качество нашей жизни и комфортность состояния человека.
Введение
1. Развитие технологий ламп…………………..… …4
2.Различные виды источников света:
2.1 Лампы накаливания……………………….………….6
2.2 Галогенные лампы…………………………………...9
2.3 Люминесцентные лампы……………….……………11
2.4 Оптоволоконные системы освещения……………...14
2.5 Светодиодные лампы………………………………..18
Заключение
Список используемой литературы
МИНОБРНАУКИ РОССИИ
Филиал федерального государственного бюджетного
образовательного учреждения
высшего профессионального
«Самарский государственный технический университет»
В г.Сызрани
Кафедра ЭПП
Отчет
по учебной практике
Выполнил:
Студент гр. ЭВБ-280
Елагин А.В.
Проверил:
Ст.пр каф. ЭПП
Колесников А.А.
2013г.
Содержание
Введение
1. Развитие технологий ламп…………………..… …4
2.Различные виды источников света:
2.1 Лампы накаливания……………………….………….6
2.2 Галогенные лампы…………………………………...9
2.3 Люминесцентные лампы……………….……………11
2.4 Оптоволоконные системы освещения……………...14
2.5 Светодиодные лампы………………………………..18
Заключение
Список используемой литературы
Задание №2 Нормативные документы: Электробезопасность
Введение
Мы живём в мире света и созданных им изображений. Солнечный свет былначалом жизни и колыбелью Человека на Земле. Сознание человека стало определяться его образным мышлением. Природный свет, рождённый солнцем, создал для нас огромный мир ощущений и дал нам возможность определить своё
отношение к окружающему нас миру, а свет искусственный стал началом человеческой цивилизации. Сегодня электрический свет определяет качество нашей жизни и комфортность состояния человека. Плохой свет, как и плохие очки, может стать причиной усталости, раздражительности, плохого настроения и других неприятных последствий. Искусство освещения пытаются постичь миллионы людей, обустраивая своё жилище и рабочее место. Принимаясь за
улучшение светового комфорта и уюта в собственном доме или квартире, полезно иметь хотя бы самые элементарные сведения о светотехнике и правилах рационального освещения.
Улучшение светового комфорта в домашних условиях и на работе создаёт человеку не только настроение, но и позволяет длительное время сохранять работоспособность; а правильный световой дизайн и хорошо подобранная цветовая гамма окружающей обстановки определяют внутреннее состояние и помогают сохранить здоровье. Следует, конечно, не забывать, что здоровый образ жизни мы связываем со светлой и приятной глазу окружающей обстановкой, которая создаёт нам запас прочности во всех наших начинаниях в жизни.
1.Развитие технологии ламп
Электрический свет интернационален по месту своего рождения. В его открытии и создании участвовали выдающиеся учёные и изобретатели из многих стран мира. Первый этап разработки электрических источников света благодаря открытиям и изобретениям Деви, Вольта, Петрова, Мольена, Габела, Адамаса, Шпренгеля, Ладыгина, Яблочкова, Дедриксона и других завершился в 1879г.
Созданием Эдисоном лампы накаливания в привычном для нас конструктивном виде. Первые публичные установки электрического освещения появились в конце 19 века в странах Западной Европы, в Америке и России. Электрическая «свеча Яблочкова» произвела сенсацию в Париже и была названа «русским светом».
Конкуренция ламп накаливания
появилась с разработкой
офисов, банков, ресторанов, магазинов и др. помещений.
Современную историю источников света удивительные по продолжительности работы «вечные» лампы с новым принципом действия (рис.1.2). Это так называемые компактные безэлектродные высокочастотные люминесцентные лампы типа QL мощностью 85 Вт и сроком службы 60 тыс. часов, не уступающие по другим характеристикам лучшим разрядным лампам. Представленные в начале 90-х годов фирмой Philips, эти лампы находят всё большее применение, особенно в странах северной Европы. Совсем недавно они были использованы при модернизации освещения большой учебной аудитории в Финляндию. Авторы проекта утверждают, что очередная замена ламп будет проведена в 2025 году.
1879г.- изобретение лампы накаливания
1924г.- изобретение автомобильной фары ближнего/дальнего света
1933г.- внедрение ртутной лампы высокого давления
1938г.- внедрение люминесцентной лампы
1949г.- создание лампы накаливания «мягкого белого» цвета
1954г.- внедрение кварцевой лампы накаливания
1958г.- внедрение галогенной лампы
1962г.- изобретение натриевой лампы высокого давления 1965г.-
внедрение металлогалогенной лампы
1973г.- внедрение люминесцентных ламп пониженной мощности
1974г.- внедрение эллипсоидного
1975г.- внедрение зеркальных ламп с фацетным отражателем
1982г.- внедрение металлогалогенной лампы низкой мощности
1987г.- внедрение люминесцентной лампы Biax в 40 ватт
1989г.- внедрение лампы (Halogen-IR™ PAR)
1991г.- внедрение лампы (ConstantColor™ Presise)
1992г.- внедрение компактной люминесцентной лампы (Biax™Compact)
1994г.- изобретение безэлектродной люминесцентной лампы (Genura)
1995г.- выпуск компактной
2.Различные виды источников света
2.1 Лампы накаливания
По особенностям устройства
и принципа действия лампы
накаливания,применяемые для
Устройство ламп, в принципе осталось таким же, как предложил Эдисон. Для повышения температуры тела накала и снижения его скорости распыления (это основные способы увеличения световой отдачи и срока службы ламп накаливания) вместо угольной нити в современных лампах используется спиральная или биспиральная (спираль из спирали) вольфрамовая проволока и в подавляющем большинстве типов ламп вместо вакуума применяется инертный газ:
аргон или криптон. Появился также класс ламп с зеркальным отражателем, т.е. лампы светильники. Лампы очень чувствительны к колебаниям напряжения в сети: при перенапряжении резко снижается срок службы, а недостаточное напряжение ведёт к непропорционально большой потере светового потока (хотя срок службы при этом возрастает). Нормальная работа ламп обеспечивается при колебаниях напряжения не более чем на 5 %. Для сетей с постоянным перенапряжением в России выпускаются лампы с маркировкой 230-240В. Лампы накаливания одинаково хорошо работают на переменном и постоянном токе.
Почти для всех типов ламп средний срок службы составляет 1000 ч. В реальных условиях он может быть меньшим в зависимости от условий эксплуатации и конструктивного исполнения светильника. При работе в среднем 8 ч в день лампа живёт обычно 3-5 месяцев. Лампы имеют невысокую световую отдачу от 7 до 17 лм/Вт. Этот показатель растёт при увеличении мощности лампы и снижении напряжения, на которое она рассчитана. Например, лампа мощностью 40 Вт 220В имеет световую отдачу около 10 лм/Вт, а 100-ваттная – до 14 лм/Вт.
Отличить лучшую по энергоэкономичности лампу можно по её белому излучению. Лампа накаливания (рис.1) – традиционный источник света в помещениях жилых и общественных зданий. Они создают неповторимую обстановку праздничности или уюта и применяются во всех случаях, когда это необходимо по условиям дизайна. В функциональном отношении они очень эффективны при освещении картин и других нестойких к воздействию света экспонатов. Их невысокий срок службы и световая отдача бывают не столь важны в помещениях с кратковременным пребыванием людей и при низких нормированных значениях освещённости.
Рис. 1 Лампа накаливания
Принцип работы
В лампе накаливания используется эффект нагревания проводника (нити накаливания) при протекании через него электрического тока. Температура вольфрамовой нити накала резко возрастает после включения тока. Нить излучает электромагнитное излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 6000 K (температура поверхности Солнца). Чем меньше температура, тем меньше доля видимого света и тем более «красным» кажется излучение.
Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Идеальная температура в 6000 K недостижима, т. к. при такой температуре любой материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления — вольфрам (3410 °C) и, очень редко, осмий (3045 °C).
При практически достижимых температурах 2300—2900 °C излучается далеко не белый и не дневной свет. По этой причине лампы накаливания испускают свет, который кажется более «желто-красным», чем дневной свет. Для характеристики качества света используется т. н. цветовая температура.
В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине вольфрамовая нить защищена стеклянной колбой, заполненной нейтральным газом (обычно аргоном). Первые лампочки делались с вакуумированными колбами. Однако в вакууме при высоких температурах вольфрам быстро испаряется, делая нить тоньше и затемняя стеклянную колбу при осаждении на ней. Позднее колбы стали заполнять химически нейтральными газами. Вакуумные колбы сейчас используют только для ламп малой мощности.
2.2 Галогенные лампы
По принципу действия эти лампы устроены так же, как и другие лампы накаливания. Главное отличие состоит в том, что внутренний объём лампы заполнен парами йода или брома – т.е. галогенных элементов, что и отражено в названии ламп. Использована химическая способность этих элементов непрерывно «собирать» осевшие на колбе испарившиеся частицы вольфрама (реакция окисления) и возвращать их «домой» на вольфрамовую спираль (реакция восстановления). Этот «галогенно-вольфрамовый цикл» позволяет увеличить температуру и одолжительность жизни тела накала и, в конечном счёте, повысить в 1,5-2 раза световую отдачу и срок службы ламп. Другое важное отличие состоит в том, что колба выполнена не из обычного, а из кварцевого стекла, более устойчивого к высокой температуре и химическим взаимодействиям. Благодаря этому размеры галогенной лампы (Рис. 2 ) можно уменьшить в несколько раз по сравнению с обычными лампами такой же мощности. Устройство
зеркальных галогенных ламп отличается тем, что зеркальный отражатель вместе с цоколем приклеен к колбе лампы. Зеркальное покрытие выполняется путём напыления на стеклянный отражатель химически чистого алюминия (непрозрачное покрытие) или специального полупрозрачного покрытия.
Рис.2 Галогенная лампа накаливания
с цоколем Е27 и двойной колбой
Лампы с полупрозрачным (интерференционным) покрытием почти не нагревают освещаемую поверхность, т.к. ИК излучение пропускается отражателем «назад». Некоторые типы ламп имеют также фильтры, не пропускающие УФ лучи. Наряду с лампами, рассчитанными для непосредственного включения в сеть с напряжением 220,127 или 110 В, очень широкое применение находят лампы низкого напряжения обычно на 12 В. Как и все лампы накаливания, галогенные лампы резко реагируют на изменение напряжения в сети. Увеличенное на 5-6% напряжение может привести к почти двукратному сокращению срока службы. Энергоэкономичность в 1,5-2 раза выше, чем у других ламп накаливания. Большинство ламп имеют срок службы 2000 ч, т.е. в 2 раза больший,чем обычные лампы накаливания. Некоторые типы зеркальных ламп выпускаются со сроком службы 3000 и 4000 ч.