Автор работы: Пользователь скрыл имя, 27 Января 2014 в 20:35, реферат
Диапазон температур, действующих в природе на растения, достаточно широк: от -77ºС до + 55°С, т.е. составляет 132°С. Наиболее благоприятными для жизни большинства наземных организмов являются температуры +15 - +30°С. Из цветковых растений особенно устойчивы суккуленты. Некоторые кактусы и представители семейства толстянковых (Crassulaceae) могут выдерживать нагревание солнечными лучами до +55 - +65°С. Из культурных растений жароустойчивостью обладают теплолюбивые растения южных широт - сорго, рис, хлопчатник, клещевина. Наиболее устойчивы к высоким температурам некоторые сине-зеленые водоросли и бактерии, живущие в горячих источниках при температуре +70°С и выше.
ФГБОУ ВПО Пугачевский филиал «Саратовского аграрного университета им. Н. И. Вавилова»
РЕФЕРАТ
На тему: «Температурная устойчивость растений»
Выполнила:
Студентка А-19201 группы
Сафонова Наталья
Пугачев. 2013г.
Устойчивость растений к высоким температурам
Диапазон температур, действующих
в природе на растения, достаточно
широк: от -77ºС до + 55°С, т.е. составляет
132°С. Наиболее благоприятными для жизни
большинства наземных организмов являются
температуры +15 - +30°С. Из цветковых растений
особенно устойчивы суккуленты. Некоторые
кактусы и представители семейства толстянковых (Crassulaceae) мо
Растения относят к пойкилотерм
Организмы в зависимости
от их температурного оптимума можно
разделить на термофильные(выше 50°С), теплолюбивые (25-50°С),
Устойчивость растений к
высоким температурам называют жароустойчивостью, ил
По жароустойчивости растения можно разделить на 3 группы (Лосева, 1988):
1) жаростойкие – главным
образом низшие растения, например,
термофильные бактерии и сине-
2) жаровыносливые – растения
сухих мест обитания: суккуленты
(выдерживают повышение
3) нежаростойкие – мезофиты и водные растения. Мезофиты солнечных мест обитания могут переносить +40-47°С, затененных – приблизительно +40-42°С; водные растения, кроме сине-зеленых водорослей, выдерживают повышение температуры до 38-42°С.
Влияние высоких температур на физиологические процессы растений. Температура влияет на скорость диффузии и, как следствие, на скорость химических реакций (прямое влияние). Кроме того, она вызывает изменение структуры белковых макромолекул (косвенное влияние). Это приводит не только к изменению активности ферментов, но и к увеличению проницаемости мембран, нарушению гомеостаза, изменению взаимодействия между липидами, комплементарными цепями нуклеиновых кислот, нуклеиновыми кислотами и белками, гормонами и рецепторами. Денатурация белков и нарушения структуры мембран являются первыми звеньями повреждения клеток при высокой температуре.
Непосредственной реакцией
на температурное воздействие
От состояния липидов в тилакоидах хлоропластов в значительной степени зависят фотохимические реакции и фотофосфорилирование. Нагрев хлоропластов, например, шпината, до +30°С вызывает снижение интенсивности фотофосфорилирования, а при температуре около +40 °С подавляется циклическое фотофосфорилирование. Наиболее чувствительна к повышенной температуре фотосистема II, а главный фермент С3-цикла — РуБФкарбоксилаза – устойчив к высокой температуре.
Дыхание также ингибируются
при высоких температурах. Однако
оптимальные температуры
При действии высокой температуры (гипертермия) изменяется вязкость цитоплазмы: чаще увеличивается, реже уменьшается, но этот процесс обратим даже при действии температуры +51°С в течение 5 мин. В основе изменения вязкости цитоплазмы при повышении температуры лежит изменение цитоскелета.
Температура существенно влияет на водный статус растения. Одной из самых быстрых реакций на действие высокой температуры является повышение интенсивности транспирации, что сопровождается возникновением у растения водного дефицита.
Высокая температура нарушает также опыление и оплодотворение, что приводит к недоразвитию семян. У злаков высокие температуры в период заложения колосков и цветков приводят к уменьшению их числа. У многих растений высокие температуры в период цветения вызывают стерильность цветков и опадание завязей (Кузнецов, 2005).
Адаптация растений к высоким температурам. В процессе эволюции формировались и закреплялись различные механизмы адаптации, делающие растение более устойчивым к высоким температурам. Выработка таких механизмов шла в нескольких направлениях: уменьшение перегрева за счет транспирации; защита от тепловых повреждений (опушение листьев, толстая кутикула); стабилизация метаболических процессов (более жесткая структура мембран, низкое содержание воды в клетке); высокая интенсивность фотосинтеза и дыхания. В случаях, если повреждающее действие высокой температуры превышает защитные возможности морфо-анатомических и физиологических приспособлений, включается следующий механизм защиты: образуются так называемые белки теплового шока (БТШ). БТШ – это последний «рубеж обороны» живой клетки, который запускается в ответ на повреждающее действие высоких температур. Они были открыты в 1962 г. у дрозофилы, потом у человека, затем у растений (1980 г.) и микроорганизмов. БТШ помогают клетке выжить при действии температурного стрессора и восстановить физиологические процессы после его прекращения. БТШ образуются в результате экспрессии определенных генов. Некоторые из этих БТШ синтезируются не только при повышенной температуре, но и при других стресс-факторах, например, при недостатке воды, низких температурах, действии солей. Показано, что после действия одного стрессора клетки становятся устойчивыми к другим. Так, томаты после 48-часового действия 38°С выдерживали температуру 2°С 21 сутки.
БТШ в растении ведут себя
так, как если бы они функционировали
в изолированной клетке, а не в
составе многоклеточного
Транзитный характер новообразования БТШ наблюдается лишь при нелетальном повышении температуры. При летальном повышении температуры транзитность функционирования системы теплового шока нарушается, что свидетельствует о гибели организма. Следовательно, действие белков теплового шока приурочено к начальному периоду ответа растений на повышение температуры. БТШ, временно защищая организм от гибели, тем самым создают условия для его последующей долговременной адаптации.
В настоящее время выделяют 5 групп белков теплового шока, которые обозначаются по молекулярным массам их основных компонентов: БТШ-90, БТШ-70, БТШ-60, БТШ-20 и БТШ-8,5. Большинство этих белков удивительно консервативны. Так, например, БТШ-70 кукурузы, дрозофиллы и человека идентичны на 75%. Все БТШ кодируются мультигенными семействами, содержащими до 10 и более генов. Главным отличием системы белков теплового шока растений по сравнению с другими организмами является многокомпонентность и сложность состава низкомолекулярных (15-30 кДа) полипептидов, не гомологичных соответствующим БТШ других организмов. Именно с функционированием низкомолекулярных БТШ связывают защитную роль данной системы в растениях. БТШ локализуются в ядре, цитозоле, клеточных органеллах и функционируют в клетках в виде высокомолекулярных комплексов. Также имеются индивидуальные БТШ, обладающие протеолитическими свойствами, что свидетельствует о важности данной системы для выживания организма в экстремальных условиях и создают условия для формирования более совершенных долговременныхмеханизмов адаптации (Лозовская, 1982; Кузнецов, 2005).
Устойчивость растений к низким температурам
Устойчивость растений к
низким температурам подразделяют на
холодостойкость и
Холодостойкость растений – способность теплолюбивых растений переносить низкие положительные температуры. Теплолюбивые растения сильно страдают при положительных пониженных температурах. Внешними симптомами страдания растений являются завядание листьев, появление некротических пятен.
Причины повреждения и гибели этих растений под действием пониженных температур: увеличение проницаемости мембран, разобщение окислительного фосфорилирования и дыхания, фотосинтетического фосфорилирования и темновой фазы фотосинтеза, нарушение белкового синтеза и накопление токсичных веществ. Основной причиной повреждения теплолюбивых растений при охлаждении является переход мембранных липидов из жидкокристаллического состояния в гель. Изменение физического состояния мембран влияет на активность Н+-АТФаз, переносчиков белков ионных каналов и многих ферментов. Мембраны теряют свою эластичность. В результате увеличивается проницаемость мембран и через плазмалемму и тонопласт интенсивно выделяются водорастворимые соединения. Органические кислоты из вакуоли поступают в хлоропласт, и хлорофилл превращается в феофитин.
Низкие температуры (+4°С) вызывают у теплолюбивых растений (огурцы, томаты) уменьшение интенсивности дыхания. Однако в первые часы понижения температуры в клетках иногда увеличивается количество АТФ, поскольку ростовые процессы, требующие большого количества энергии, в первые часы охлаждения тормозятся. Если пониженные температуры действуют долго, то количество АТФ потом падает. Дефицит АТФ становится причиной слабого поглощения солей корневой системой, в результате нарушается поступление воды из почвы.
Нарушается согласованность в работе ферментов, катализирующих ход различных реакций, следствием чего является резкое увеличение количества эндогенных токсинов (ацетальдегид, этанол и др.). При пониженной температуре почвы у большинства растений подавляется поглощение нитратов и уменьшается их транспорт из корней в листья. Уменьшение скорости оттока еще больше ухудшает поглощение нитратного азота.
При длительном действии пониженных
температур увеличивается
Адаптация теплолюбивых растений к низким положительным температурам. Защитное значение при действии низких положительных температур на теплолюбивые растения имеет ряд приспособлений. Прежде всего, это поддержание стабильности мембран и предотвращение утечки ионов. Устойчивые растения отличаются большей долей ненасыщенных жирных кислот в составе фосфолипидов мембран. Это позволяет поддерживать подвижность мембран и предохраняет от разрушений. В этой связи большую роль выполняют ферменты ацетилтрансферазы и десатуразы. Последние приводят к образованию двойных связей в насыщенных жирных кислотах.
Приспособительные реакции
к низким положительным температурам
проявляются в способности
Для повышения холодостойкости используется предпосевное замачивание семян. Для этого наклюнувшиеся семена теплолюбивых культур в течение нескольких суток выдерживают в условиях чередующихся температур: 12 ч при 1-5°С, 12ч при 15-22°С. Эффективным является и использование микроэлементов (Zn, Mn, Сu, В, Мо). Так, замачивание семян в растворах борной кислоты, сульфата цинка или сульфата меди повышает холодоустойчивость растений. Есть данные о положительном влиянии АБК, цитокининов, хлорхолинхлорида на холодоустойчивость.