Строение атома

Автор работы: Пользователь скрыл имя, 14 Ноября 2014 в 14:43, реферат

Краткое описание

В далёком прошлом философы Древней Греции предполагали, что вся материя едина, но приобретает те или иные свойства в зависимости от её “сущности”. Некоторые из них утверждали, что вещество состоит из мельчайших частиц, называемых атомами. Научные основы атомно-молекулярного учения были заложены позднее в работах русского учёного М.В. Ломоносова, французских химиков Л. Лавуазье и Ж. Пруста, английского химика Д. Дальтона, итальянского физика А. Авогадро и других исследователей.
Периодический закон Д.И. Менделеева показывает существование закономерной связи между всеми химическими элементами. Это говорит о том что в основе всех атомов лежит нечто общее. До конца XIX века в химии царило убеждение, что атом есть наименьшая неделимая частица простого вещества. Считалось, что при всех химических превращениях разрушаются и создаются только молекулы, атомы же остаются неизменными и не могут дробиться на части. И наконец в конце XIX века были сделаны открытия, показавшие сложность строения атома и возможность превращения одних атомов в другие.

Содержание

Введение ………………………………………………………………………………...3

1. История становления понятия ….…………………………………………………....4

2. Модели атомов.…….………………………………………………………………….7

2.1. Модель атома Томпсона……………………………………………………...……..9

2.2. Модель атома Резерфорда…….………………………………………………..….10

2.3. Модель атома Бора..……………………………………….………………......…...12

Заключение………………………………………………………………………….…..13

Список использованной литературы…………………………………………………..14

Вложенные файлы: 1 файл

KSE_titulny_oglavlenie.docx

— 176.44 Кб (Скачать файл)

В античности широкое хождение имела теория, традиционно приписываемая Эмпедоклу (492–432 до н.э.), согласно которой вся материя в конечном счете сводится к четырем элементам (земле, воздуху, огню и воде), смешанным в разных пропорциях. Но такая теория отнюдь не была химической; элементы в античности были придуманы для объяснения таких физических свойств, как влажность и сухость, тепло и холод, стремление к подъему и падению. Никто никогда не рассматривал всерьез возможность того, что существуют только четыре разновидности атомов. Античное представление об атоме, когда его удалось сформулировать явно со всеми подробностями, оказалось более близким нашему представлению о молекуле, ибо в древности предполагалось, что каждое вещество с его особыми свойствами состоит из атомов своего вида.

В средние века алхимики (бывшие почти единственными представителями той категории людей, которых ныне называли бы чистыми учеными) правильно идентифицировали такие химические элементы, как сера и ртуть, и ошибочно некоторые другие. Но атомистическая теория в мышлении алхимиков занимала весьма незначительное место, оставаясь в основном достоянием философов.

 

 

 

2. Модели атомов. 
Атомы состоят из еще более мелких частиц, которые были открыты в разное время разными исследователями. Самой первой из таких частиц оказался электрон, несущий единичный электрический заряд.

Электрон получил свое нынешнее название только в самом конце прошлого века, а до этого физики только предполагали, что существует некий "атом электричества", с помощью которого по проводам передается электрический ток.

В 1853 году французский исследователь А. Массон решил попробовать пропускать электрические разряды (искры) через стеклянную трубку, из которой откачан воздух. Впоследствии с помощью этого несложного устройства англичанин Вильям Крукс провел множество опытов, и с тех пор такие трубки называют круксовыми (их прямые "потомки" - редко встречающиеся теперь электронно-лучевые телевизоры и мониторы).

Рис. 2-1. Вращение вертушки с лопастями под действием катодных лучей в трубке Крукса. Этот опыт позволял предположить, что катодные лучи больше похожи не на обычный свет, а на поток микроскопических частиц, имеющих массу.

Что же удалось выяснить с помощью круксовых трубок? Они служили источником необычных лучей, которые распространялись отрицательно заряженным электродом - катодом. Эти лучи получили название катодных. Описывая катодные лучи, Крукс отмечал такие их свойства:

- они вызывают  свечение некоторых веществ, нанесенных  на внутреннюю поверхность трубки;

- они обладают  кинетической энергией и способны  передавать механическое движение  вертушке с лопастями (рис. 2-1);

- они отклоняются  магнитным полем;

- они отрицательно  заряжены, потому что движутся  по направлению к положительному  полюсу трубки.

В 1897 году английский физик Дж. Дж. Томсон сконструировал похожую трубку, с помощью которой можно было измерять отклонение катодных лучей в электрическом поле (рис.2-2).

Напряжение, подаваемое на пластины 4 и 5, между которыми проходили катодные лучи, можно было уменьшать или увеличивать. Чем выше было напряжение на пластинах 4 и 5, тем сильнее отклонялся от прямолинейной траектории поток катодных лучей.

Рис. 2-2. Прибор Томсона для измерения отклонения катодных лучей под действием электрического поля. 1 - отрицательно заряженный электрод (катод), 2 - положительно заряженный электрод, 3 - отверстие, 4 и 5 - пластины электродов для отклонения катодных лучей, 6 - часть трубки, покрытая изнутри слоем вещества, светящимся под действием катодных лучей, 7 - светящееся пятно.

Впоследствии этот эксперимент помог установить массу и заряд частиц, из которых состоят катодные лучи: ведь чем меньше масса и чем больше заряд частицы, тем легче отклонить ее от прямолинейной траектории с помощью электрического поля. Правда, для этого потребовались дополнительные эксперименты, но в 1909 году цель была достигнута. Электрический заряд таинственных "катодных" частиц, выраженный в кулонах, оказался величиной чрезвычайно малой, поэтому для удобства физики и химики чаще пользуются другой шкалой, в которой величина этого "элементарного" заряда принята за единицу.

Описанные Томсоном отрицательно заряженные частицы, несущие наименьший электрический заряд, получили название электронов.

Позже в аналогичном приборе удалось наблюдать поток положительно заряженных частиц, которые стали называть протонами. Масса протона оказалась почти в 2000 раз больше массы электрона, а его заряд, как выяснилось, равен заряду электрона, но со знаком "плюс".

Таким образом, в распоряжении физиков появились первые "строительные детали", с помощью которых уже можно было попытаться построить те или иные модели атомов.

 

 

 

 

 

 

2.1.Модель  атома Томпсона. 
Атом по Томсону состоит из электронов, помещённых в положительно заряженный «суп», компенсирующий отрицательные заряды электронов, подобно отрицательно заряженным «изюминкам» в положительно заряженном «пудинге». Электроны, как предполагалось, были распределены по всему атому. Было несколько вариантов возможного расположения электронов внутри атома, в частности вращающиеся кольца электронов. В некоторых вариантах модели вместо «супа» предлагалось «облако» положительного заряда.

Согласно этой модели, электроны могли свободно вращаться в капле или облаке такой положительно заряженной субстанции. Их орбиты стабилизировались тем, что, при удалении электрона от центра положительно заряженного облака, он испытывал увеличение силы притяжения, возвращающей его обратно, поскольку внутри его орбиты было больше вещества противоположного заряда, чем снаружи (по закону Гаусса). В модели Томсона электроны могли свободно вращаться по кольцам, которые стабилизировались взаимодействиями между электронами, а спектры объясняли энергетические различия между различными кольцевыми орбитами.

Статья Томсона была опубликована в марте 1904 года в Философском журнале (Philosophical Magazine), ведущем британском научном журнале того времени. Томсон позднее пытался объяснить с помощью своей модели яркие спектральные линии некоторых элементов, но не особо в этом преуспел.

Тем не менее, модель Томсона (также как подобная модель сатурнианских колец для электронов атомов, которую выдвинул тоже в 1904 году Нагаока, по аналогии с моделью колец Сатурна Джеймса Клерка Максвелла) стала ранним предвестником более поздней и более успешной модели Бора, представляющей атом как подобие Солнечной системы.

 

                                                                                  Схематическое представление модели Томсона. В математической модели Томсона «корпускулы» (электроны) были расположены не случайно, а во вращающихся кольцах.

 

 

 

2.2. Модель атома Резерфорда.(Планетарная модель атома) 
В 1910 году английский физик Эрнст Резерфорд со своими учениками Гейгером и Марсденом провели эксперимент, который дал поразительные результаты, необъяснимые с точки зрения модели Томсона. В то время уже была открыта радиоактивность, о которой в наше время знают даже школьники начальных классов. Радиоактивные вещества способны испускать не только лучи высокой энергии, но и частицы высокой энергии, которые способны проникать сквозь многие предметы. Такие частицы называются альфа-частицами.

Рис. 2-4. Опыт Э.Резерфорда. Поток альфа-частиц проникает сквозь тонкую золотую фольгу толщиной приблизительно 10000 атомов. Пройдя сквозь золото, альфа-частицы вызывают вспышку при ударе об экран. По вспышкам на экране можно видеть отклонения части альфа-частиц от прямолинейной траектории.

В опыте Резерфорда поток альфа-частиц направлялся на тонкую золотую фольгу, а затем становился видимым на специальном экране со светящимся покрытием (рис 2-4).

Обнаружилось, что не все альфа-частицы проходят фольгу насквозь по прямой траектории. Некоторая их часть заметно отклонялась в сторону и даже отражалась от тонкого листа золотой фольги, как снаряд от брони! Это могло означать только одно: атомы золота не сплошные, а состоят из "разреженных" пустот (сквозь которые альфа-частицы проходят беспрепятственно) и очень плотных областей, от которых альфа-частицы отскакивают, как мячик.

Резерфорд предположил, что атом золота состоит из плотного, положительно заряженного ядра, в котором сосредоточена практически вся масса атома, и окружающих это ядро электронов (рис. 2-3б). Электроны вращаются вокруг ядра, образуя разреженный "электронный рой". Альфа-частицы относительно легко проходят сквозь разреженную область, занимаемую электронами и отражаются (или отклоняются в сторону) при столкновении с плотным ядром атома. По соотношению отклоненных и не отклоненных альфа-частиц удалось рассчитать, что размеры ядра атома золота примерно в 100000 раз меньше внешних границ атома, которыми он соприкасается с другими атомами!

Модель Резерфорда объясняла результаты эксперимента с альфа-частицами, но задавала физикам и химикам еще больше вопросов, чем было раньше. Почему при движении заряженного электрона около заряженного ядра не выделяется энергия? Как атомы "прикрепляются" друг к другу? Почему электроны не падают на ядро? Каким образом физические тела, состоящие из атомов, при нагревании испускают свет?

Планетарная модель атома: ядро (красное) и электроны (зелёные) 
 
 
 
 
 

 

 

2.3.Модель атома Бора. 
Боровская модель атома (Модель Бора) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать энергию непрерывно и очень быстро и, потеряв её, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка:  .

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты   и энергии   находящегося на этой орбите электрона:

Здесь   — масса электрона,   — количество протонов в ядре,   — электрическая постоянная,   — заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера, решая задачу о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R0=5,2917720859(36)·10−11 м, ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты   эВ представляет собой энергию ионизации атома водорода.

Боровская модель водородоподобного атома (Z — заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро. Переход электрона с орбиты на орбиту сопровождается излучением или поглощением кванта электромагнитной энергии (hν).

 

Заключение 
Только в конце 19-го - начале 20-го века экспериментальным путем было доказано, что на самом деле атом также имеет свою структуру и делится на частицы. Именно благодаря таким ученым, как: Э. Резерфорд, Д. Чедвик, Н. Бор, Дж. Томпсон, сегодня мы имеем представление о строении атома и его свойствах. Но все же знания об атомистической теории не являются исчерпывающими и возможно, что в недалеком будущем нам откроются новые свойства и особенности строения атома.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список использованной литературы 
1.Горелов А.А. «Концепция современного естествознания»  - М.: Издательство Юрайт, 2012. 
2.Савина О. М., Энциклопедия – М.: АСТ, 1994. 
3.Коровин Н.В., Курс общей химии – М: Высшая школа,1990.

 

 


Информация о работе Строение атома