Автор работы: Пользователь скрыл имя, 18 Сентября 2013 в 22:11, лабораторная работа
При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные по 32-м предприятиям, выпускающим однородную продукцию (выборка 10%-ная, механическая), о среднегодовой стоимости основных производственных фондов и о выпуске продукции за год.
В проводимом статистическом исследовании обследованные предприятия выступают как единицы выборочной совокупности, а показатели Среднегодовая стоимость основных производственных фондов и Выпуск продукции – как изучаемые признаки единиц.
Для проведения автоматизированного статистического анализа совокупности выборочные данные представлены в формате электронных таблиц процессора Excel в диапазоне ячеек B4:C35.
Если Ek<0, то вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной. Это означает, что значения признака не концентрируются в центральной части ряда, а достаточно равномерно рассеяны по всему диапазону от xmax до xmin.
Для нормального распределения Ek=0
Вывод: Для признака Среднегодовая стоимость основных производственных фондов Ek<0, что свидетельствует о том, что вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной. Это означает, что значения признака не концентрируются в центральной части ряда, а достаточно равномерно рассеяны по всему диапазону от xmax до xmin.
Для признака Выпуск продукции Ek<0, что свидетельствует о том, что вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной.
III. Экономическая интерпретация результатов статистического исследования предприятий2
Задача 1.
Вывод: образующие выборку предприятия типичны, т.к. из диаграммы рассеяния видно, что большинство предприятий имеют близкие по значению экономические показатели. Аномальные значения показателей представлены в табл. 2.
Задача 2.
Вывод: наиболее характерные для предприятий значения показателей среднегодовой стоимости основных фондов: =1600,00 (σ=273,48), выпуска продукции =1500,00 (σ=326,24) (табл. 8). Из табл. 9 видно, что больше половины предприятий входят в диапазон значений ( ).
Задача 3.
Вывод: Vσ первого признака 17,09≤33%, Vσ второго признака 21,74≤33% (табл.8) - колеблемость признаков незначительная, различия в экономических характеристиках предприятий выборочной совокупности не сильные. Можно утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей.
Задача 4.
Вывод: структура предприятий выборочной совокупности (ряд распределении) по среднегодовой стоимости основных фондов представлена на рабочем листе в табл. 7. Удельный вес предприятий со значениями данного показателя: наибольшими – 3 (100%), наименьшими – 4 (13,33%), типичными – 11 (66,67%).
Задача 5.
Вывод: распределение предприятий по группам носит закономерный характер, т.к. установлено, что оно близко к нормальному (визуально это прослеживается на гистограмме), и предприятия с более низкой стоимостью основных фондов преобладают в совокупности, т.к. наблюдается незначительная левосторонняя асимметрия.
Задача 6.
Вывод:
ожидаемые средние величины
среднегодовой стоимости
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
ФИЛИАЛ В Г. ЛИПЕЦКЕ
КАФЕДРА СТАТИСТИКИ
О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы №2
Вариант № 21
Выполнил: ст. III курса гр. .ФиК
Рогатовская Д.М.
Ф.И.О.
Проверил: старший преподаватель Левчегов О.Н.
Должность Ф.И.О.
Липецк, 2008 г.
Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования и частично использует результаты Лабораторной работы № 1.
В Лабораторной работе №
2 изучается взаимосвязь между
факторным признаком Среднегодо
В процессе статистического исследования необходимо решить ряд задач.
Сравнить значения η и r и сделать вывод о возможности линейной связи между признаками Х и Y.
Построить теоретическую линию регрессии.
Дать экономическую интерпретацию коэффициента регрессии.
Рассчитать коэффициент эластичности и дать его экономическую интерпретацию.
Задача 1. Установление наличия стохастической связи между факторным признаком Х и результативным признаком Y:
а) графическим методом.
Вывод: На основе анализа диаграммы рассеяния из Лабораторной работы №1, полученной после удаления аномальных значений, можно сделать вывод, что имеет место стохастическая связь. Предположительный вид связи: линейная прямая.
б) методом сопоставления параллельных рядов.
Вывод: Табл.2.1, полученная путем ранжирования предприятий по возрастанию значения факторного признака Х, показывает, что с увеличением значений факторного признака увеличиваются значения результативного признака, за исключением некоторых отклонений от общей тенденции, что позволяет сделать вывод о том, что связь между этими признаками носит закономерный характер и, следовательно, является статистической.
Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.
Вывод: Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что поскольку закономерно меняется средняя величина Y, то статистическая связь корреляционная.
Задача 3.Оценка тесноты связи признаков Х и Y:
а) на основе эмпирического корреляционного отношения.
Для анализа тесноты
связи между факторным и
.
Для вычисления η необходимо знать общую дисперсию и межгрупповую дисперсию результативного признака Y - Выпуск продукции.
Результаты выполненных расчетов представляются табл. 2.4 Рабочего файла.
Вывод: Величина η= 0,902765617 является близкой к единице, что свидетельствует о наличии тесной и сильной связи.
б) на основе линейного коэффициента корреляции признаков.
В предположении, что
связь между факторным и
Результатом работы инструмента Корреляции является табл. 2.5 Рабочего файла.
Вывод: Значение коэффициента корреляции r=0,9138826 лежит в интервале (0,9-0,99), что в соответствии со шкалой Чэддока, говорит о том, что теснота связи весьма высокая.
Так как значение коэффициента корреляции r положительное , то связь между признаками линейная прямая.
Посредством показателя η измеряется теснота связи любой формы, а с помощью коэффициента корреляции r – только прямолинейная, следовательно, значения η и r совпадают только при наличии прямолинейной связи. В теории статистики установлено, что если , то гипотезу о прямолинейной связи можно считать подтвержденной.
Вывод: [0,9027656172 – 0,913188262] = 0,018927039≤0,1- гипотезу о прямолинейной связи можно считать подтвержденной.
Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа.
Построение регрессионной модели заключается в определении аналитического выражения связи между факторным признаком X и результативным признаком Y.
Инструмент Регрессия производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии и проверку его адекватности исследуемым фактическим данным.
В результате работы инструмента Регрессия были получены результативные таблицы 2.6 – 2.9 Рабочего файла.
Вывод: Однофакторная линейная регрессионная модель связи факторного и результативного признаков имеет вид y=1,089х-242,9
Доверительные интервалы коэффициентов уравнения регрессии представлены в нижеследующей таблице:
Коэффициенты |
Границы доверительных интервалов | |||
с надежностью Р=0,68 |
с надежностью Р=0,95 | |||
Нижняя |
Верхняя |
Нижняя |
Верхняя | |
а0 |
- |
- |
- |
- |
а1 |
0,93 |
0,96 |
0,90 |
0,97 |
С увеличением надежности границы доверительных интервалов увеличиваются.
Экономическая интерпретация коэффициента регрессии а1 параметр а1 показывает, насколько изменяется в среднем результативный признак Выпуск продукции под влиянием факторного Стоимость основных фондов.
Коэффициент эластичности = 1,089* = 1,16
Экономическая интерпретация коэффициента эластичности Э: коэффициент эластичности показывает, что значение результативного признака изменится в среднем на 1,16% при изменении факторного признака на 1%.
Задача 5. Нахождение наиболее адекватного уравнения регрессии с помощью средств инструмента Мастер диаграмм. Построение для этого уравнения теоретической линии регрессии.
Уравнения регрессии и их графики построены для 4-х видов нелинейной зависимости между признаками и представлены на диаграмме 2.1 Рабочего файла.
Уравнения регрессии и соответствующие им коэффициенты детерминации R2 приведены в следующей таблице:
Вид уравнения |
Уравнение регрессии |
Коэффициент детерминации R2 |
Полином 2-го порядка |
y = 0,000x2 + 0,672x + 76,76 |
0,835 |
Полином 3-го порядка |
y = 6E-07x3 - 0,002x2 + 5,015x - 2117 |
0,838 |
Степенное |
y = 0,258x1,173 |
0,837 |
Экспоненциальное |
y = 432,0e0,000x |
0,827 |
Выбор наиболее адекватного
уравнения регрессии
Вывод: Максимальное значение коэффициента детерминации R2 = 0,838
Вид искомого уравнения регрессии – y = 6E-07x3 - 0,002x2 + 5,015x – 2117.
Это уравнение регрессии и его график приведены на отдельной диаграмме рассеяния 2.2 Рабочего файла.
Задача 6. Значения коэффициентов детерминации кубического (R2) и линейного уравнения (η2), найденного с помощью инструмента Регрессия надстройки Пакет анализа, расходятся очень незначительно (на величину 0,0084). В теории статистики установлено, что если для показателей тесноты связи имеет место неравенство , то в качестве адекватного исходным данным уравнения регрессии может быть принято линейное уравнение.
Информация о работе Автоматизированный априорный анализ статистической совокупности в среде MS Excel