Анализ основной тенденции (тренда) в рядах динамики

Автор работы: Пользователь скрыл имя, 18 Мая 2012 в 05:47, курсовая работа

Краткое описание

В современном обществе статистика стала одним из важнейших инструментов управления национальной экономики. Понятие любого управленческого решения требует предварительного анализа имеющейся ситуации, основывается на просчете вариантов развития, сравнении этих вариантов, оценке точности прогнозов, вероятности ошибок. Методическую базу для решения этих вопросов представляет статистика. Главной ее задачей является исчисление и анализ статистических показателей, благодаря чему управляющие органы получают всестороннюю характеристику объекта, будь то вся национальная экономика или отдельные ее отрасли, предприятия и их подразделения.

Содержание

Введение……………………………………………………………………...……3
1. Понятие о рядах динамики и их роль………………………………………...4
1.1 Основные показатели анализа ряда динамики………………………….....7
1.2 Средние показатели по рядам динамики………………………………….10
1.3 Статистическое изучение сезонных колебаний…………………………...12
2. Методы анализа основной тенденции (тренда) в рядах динамики………16
2.1 Экстраполяция тенденции как метод прогнозирования………………....20
Вывод……………………………………………………………………………..24
Список используемой литературы………………………………………….…..25
Приложение………………………………

Вложенные файлы: 1 файл

КУРСОВАЯ РАБОТА.doc

— 1.72 Мб (Скачать файл)

При этом посредством осреднения эмпирических данных индивидуальные колебания погашаются, и общая тенденция развития явления выражается в виде некоторой плавной линии (теоретические уровни). И так, суть метода заключается в замене абсолютных данных средними арифметическими за определенные периоды.

Скользящая средняя обладает достаточной гибкостью, но недостатком метода является укорачивание сглаженного ряда по сравнению с фактическим, что ведет к потери информации. Кроме того, скользящая средняя не дает аналитического выражения тренда.

Период скользящей может быть четным и нечетным. Практически удобнее использовать нечетный период, так как в этом случае скользящая средняя будет отнесена к середине периода скольжения. Скользящие средние с продолжительностью периода, равной 3, следующие:

; ; и т.д.

Полученные средние записываются к соответствующему срединному интервалу.

Особенность сглаживания по четному числу уровней состоит в том, что каждая из численных (например, четырехчленных) средних относится к соответствующим промежуткам между смежными периодами. Для получения значений сглаженных уровней соответствующих периодов необходимо произвести центрирование расчетных средних.

Недостатком способа сглаживания рядов динамики является то, что полученные средние не дает теоретических рядов, в основе которых лежала бы математически выраженная закономерность.

3.                 Метод аналитического выравнивания.

Более совершенным приемом изучения общей тенденции в рядах динамики является аналитическое выравнивание. При изучении общей тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены определенными математическими функциями. Вид уравнения определяется характером динамики развития конкретного явления. Логический анализ при выборе вида уравнения может быть основан на рассчитанных показателях динамики, а именно:

                если относительно стабильны абсолютные приросты (первые разности уровней приблизительно равны), , сглаживание может быть выполнено по прямой;

                если абсолютные приросты равномерно увеличиваются (вторые разности уровней приблизительно равны), можно принять параболу второго порядка;

                при ускоренно возрастающих или замедляющихся абсолютных приростах - параболу третьего порядка;

                при относительно стабильных темпах роста- показательную функцию.

Для аналитического выравнивания наиболее часто используются следующие виды трендовых моделей: прямая (линейная), парабола второго порядка, показательная (логарифмическая) кривая, гиперболическая.

Цель аналитического выравнивания- определение аналитической или графической зависимости. На практике по имеющемуся временному ряду задают вид и находят параметры функции, а затем анализируют поведение отклонений от тенденции. Чаще всего при выравнивании используются следующие зависимости; линейная, параболическая и экспоненциальная.

После выяснения характера кривой развития необходимо определить ее параметры, что можно сделать различными методами:

1)                решением системы уравнений по известным уровням ряда динамики;

2)                методом средних значений (линейных отклонений), который заключается в следующем: ряд расчленяется на две примерно равные части, и вводятся преобразования, чтобы сумма выровненных значений в каждой части совпала с суммой фактических значений, например, в случае выравнивания прямой линии ;

3)                выравниванием ряда динамики с помощью метода конечных разностей;

4)                методом наименьших квадратов: это некоторый прием получения оценки детерминированной компоненты , характеризующих тренд или ряд изучаемого явления.

Во многих случаях моделирование рядов динамики с помощью полиномов или экспоненциальной функции не дает удовлетворительных результатов, так как в рядах динамики содержатся заметные периодические колебания вокруг общей тенденции. В таких случаях следует использовать гармонический анализ.

Для менеджера предпочтительно применение именно этого метода, поскольку он определяет закон, по которому можно достаточно точно спрогнозировать значения уровней ряда. Однако его применение требует достаточных знаний в области высшей математики и математической статистики.

 

2.1 Экстраполяция тенденции как метод прогнозирования.

 

Основа большинства методов прогнозирования- экстраполяция тенденции, связанная с распространением закономерностей, связей и соотношений, действующих в изучаемом периоде, за его пределы или, другими словами, это получение представлений о будущем на основе информации, относящейся к прошлому и настоящему.

Экстраполяция, проводимая в будущее,- это перспектива, а в прошлое,- ретроспектива.

Предпосылки применения экстраполяции:

            развитие исследуемого явления в целом следует описывать плавной кривой;

            общая тенденция развития явления в прошлом и настоящем не должна претерпевать серьезных изменений в будущем.

Экстраполяцию в общем виде можно представить так:

,

где - прогнозируемый уровень; - текущей уровень прогнозного ряда;

Т- срок экстраполяции; - параметр уравнения тренда.

При этом могут использоваться разные методы в зависимости от исходной информации.

Упрощенные приемы целесообразны при недостаточной информации о предыстории развития явления (нет достаточно длинного ряда или информация заданна только двумя точками: на начало и конец периода). Упрощенные приемы основываются на средних показателях динамики, и можно выделить:

1.                 Метод среднего абсолютного прироста.

Для нахождения интересующего нас аналитического выражения тенденции на любую дату необходимо определить средний абсолютный прирост и последовательно прибавить его к последнему уровню ряда столько раз, на сколько периодов экстраполируется ряд.

,

где t- срок прогноза; i- номер последнего уровня.

Применение в экстраполяции среднего абсолютного прироста предполагает, что развитие явления происходит по арифметической прогрессии и относится в прогнозировании к классу «наивных» моделей, ибо чаше всего развитие явления следует по иному пути, чем арифметическая прогрессия Т.С. Вместе с тем в ряде случаев этот метод может найти применение как предварительный прогноз, если у исследователя нет динамического ряда: информация дана лишь на начало и конец периода (например, данные одного баланса).

2.                 Метод среднего темпа роста.

Осуществляется, когда общая тенденция характеризуется показательной кривой

,

где - последний уровень ряда динамики; k- средний коэффициент роста.

3.                 Выравнивание рядов по какой-либо аналитической формуле.

Экстраполяция дает возможность получить точечное значение прогнозов. Точное совпадение фактических данных и прогнозных точечных оценок, полученных путем экстраполяции кривых, имеет малую вероятность.

Любой статистический прогноз носит приближенный характер, поэтому целесообразно определение доверительных интервалов прогноза:

, ,

где - коэффициент доверия по распределению Стьюдента при уровне значимости ; - средняя квадратическая ошибка тренда; k- число параметров в уравнении; - расчетное значение уровня.

Аналитические методы основаны на применении метода наименьших квадратов к динамическому ряду и представлении закономерности развития явления во времени в виде уравнения тренда, то есть математической функции уровней динамического ряда (y) от факторного времени (t): y=f(t).

Аналитическое сглаживание позволяет не только определить общую тенденцию изменения явления на рассматриваемом отрезке времени, но и выполнять расчеты для таких периодов, в отношении которых нет исходных данных.

Адаптивные методы используются в условиях сильной колеблемости уровней динамического ряда и позволяют при изучении тенденции учитывать степень влияния предыдущих уровней на последующие значения динамического ряда. К адаптивным методам относятся методы скользящих и экспоненциальных средних, метод гармонических весов, методы авторегрессионных преобразований.

Цель адаптивных методов заключается в построении самонастраивающихся моделей, способных учитывать информационную ценность различных членов временного ряда и давать достаточно точные оценки будущим членам данного ряда. ТС

Прогноз получается как экстраполяция последней тенденции. В разных методиках прогнозирования процесс настройки (адаптации) модели осуществляется по-разному, и можно выделить:

1)                метод скользящей средней (адаптивной фильтрации, метод Бонса-Дженкинса);

2)                метод экспоненциального сглаживания (методы Хольда, Брауна, экспоненциальной средней).

Скользящие средние представляют собой средние уровни за определенные периоды времени путем последовательного передвижения начала периода на единицу времени. При простой скользящей средней все уровни временного ряда считаются равноценными, а при исчислении взвешенной скользящей средней каждому уровню в пределах интервала сглаживания приписывается вес, зависящий от расстояния данного уровня до середины интервала сглаживания.

Особенность метода экспоненциального сглаживания в том, что в процедуре выравнивания каждого наблюдения используется только значения предыдущих уравнений, взятых с определенным весом. Смысл экспоненциальных средних состоит в нахождении таких средних, в которых влияние прошлых наблюдений затухает по мере удаления от момента, для которого определяется средние.


Вывод

 

Всякий ряд динамики теоретически может быть представлен в виде составляющих:

1) тренд – основная тенденция развития динамического ряда (к увеличению или снижению его уровней);

2) циклические (периодические колебания, в том числе сезонные);

3) случайные колебания.

С помощью рядов динамики изучение закономерностей развития социально – экономических явлений осуществляется в следующих основных направлениях:

1) Характеристика уровней развития изучаемых явлений во времени;

2) Измерение динамики изучаемых явлений посредством системы статистических показателей;

3) Выявление и количественная оценка основной тенденции развития (тренда);

4) Изучение периодических колебаний;

5) Экстраполяция и прогнозирование.

В заключении необходимо отметить, что выполнив данную курсовую работу я закрепила теоретические знания, полученные мною в процессе изучения данного курса, а так же получила навыки самостоятельного решения конкретных вопросов.


Список используемой литературы

 

1.                 Курс лекций по статистике, студента группы ВЭ-052;

2.                 Ефимова М.Р., Петрова Е.В. Общая теория статистики: учебник. 2004г.

3.                 Сергеева И.И., Тимофеева С.А., Чекулина Т.А. Статистика: учебник. 2008г.

4.                 Шмойлова Р. А. Теория статистики: учебник. 2002г.

5.                 Интернет


Приложение

 

Имеются данные о реализации продукции компании ООО «СЕТА» по месяцам за 2004,2005,2006,2007 гг., в тыс. руб.:

 

Год

Месяц

I

II

III

IV

V

VI

VII

VII

IX

X

XI

XII

2004

2005

2006

2007

297

315

573

785

272

303

515

697

284

313

560

715

279

274

542

699

270

261

504

670

266

255

480

658

250

295

495

667

253

307

562

713

275

370

601

784

291

420

657

792

302

458

700

804

307

505

734

879

Информация о работе Анализ основной тенденции (тренда) в рядах динамики