Автор работы: Пользователь скрыл имя, 28 Марта 2014 в 15:55, реферат
Абсолютные статистические величины показывают объем, размеры, уровни различных социально-экономических явлений и процессов. Они отражают уровни в физических мерах объема, веса и т.п. В общем, абсолютные статистические величины – это именованные числа. Они всегда имеют определенную размерность и единицы измерения. Последние определяют сущность абсолютной величины.
Относительные статистические величины выражают количественные соотношения между явлениями общественной жизни, они получаются в результате деления одной абсолютной величины на другую.
ВВЕДЕНИЕ………………………………………………………………………..2
ГЛАВА 1. Абсолютные и относительные величины………………………….3
ГЛАВА 2. Средние величины…………………………………………………..4
ГЛАВА 3. Показатели вариации………………………………………………11
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ………………………….20
Мода.
Характеристиками вариационных рядов, наряду со средними, являются мода и медиана.
Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.
Для интервальных рядов распределения с равными интервалами мода определяется по формуле:
где - начальное значение интервала, содержащего моду;
- величина модального интервала;
- частота модального интервала;
- частота интервала, предшествующего модальному;
- частота интервала, следующего за модальным.
Медиана
Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда (упорядоченный ряд - это расположение единиц совокупности в возрастающем или убывающем порядке).
ГЛАВА 3. ПОКАЗАТЕЛИ ВАРИАЦИИ
Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака.
Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов, которые по-разному сочетаются в каждом отдельном случае.
Средняя величина — это абстрактная, обобщающая характеристика признака изучаемой совокупности, но она не показывает строения совокупности, которое весьма существенно для ее познания. Средняя величина не дает представления о том, как отдельные значения изучаемого признака группируются вокруг средней, сосредоточены ли они вблизи или значительно отклоняются от нее. В некоторых случаях отдельные значения признака близко примыкают к средней арифметической и мало от нее отличаются. В таких случаях средняя хорошо представляет всю совокупность.
В других, наоборот, отдельные значения совокупности далеко отстают от средней, и средняя плохо представляет всю совокупность.
Колеблемость отдельных значений характеризуют показатели вариации.
Термин "вариация" произошел от латинского variatio –“изменение, колеблемость, различие”. Однако не всякие различия принято называть вариацией. Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака: случайную и систематическую.
Анализ систематической вариации позволяет оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов. Например, изучая силу и характер вариации в выделяемой совокупности, можно оценить, насколько однородной является данная совокупность в количественном, а иногда и качественном отношении, а следовательно, насколько характерной является исчисленная средняя величина. Степень близости данных отдельных единиц хi к средней измеряется рядом абсолютных, средних и относительных показателей.
Абсолютные и средние показатели вариации и способы их расчета.
Для характеристики совокупностей и исчисленных величин важно знать, какая вариация изучаемого признака скрывается за средним.
Для характеристики колеблемости признака используется ряд показателей. Наиболее простой из них - размах вариации.
Размах вариации - это разность между наибольшим ( ) и наименьшим ( ) значениями вариантов.
Чтобы дать обобщающую характеристику распределению отклонений, исчисляют среднее линейное отклонение d, которое учитывает различие всех единиц изучаемой совокупности. Среднее линейное отклонение определяется как средняя арифметическая из отклонений индивидуальных значений от средней, без учета знака этих отклонений:
.
Порядок расчета среднего линейного отклонения следующий:
1) по
значениям признака
;
2) определяются отклонения каждой варианты от средней ;
3) рассчитывается
сумма абсолютных величин
4) сумма абсолютных величин отклонений делится на число значений:
.
Если данные наблюдения представлены в виде дискретного ряда распределения с частотами, среднее линейное отклонение исчисляется по формуле средней арифметической взвешенной:
Порядок расчета среднего линейного отклонения взвешенного следующий:
1) вычисляется
средняя арифметическая
;
2) определяются абсолютные отклонения вариант от средней / /;
3) полученные
отклонения умножаются на
4) находится сумма взвешенных отклонений без учета знака:
;
5) сумма взвешенных отклонений делится на сумму частот:
.
Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения.
Основными обобщающими показателями вариации в статистике являются дисперсии и среднее квадратическое отклонение.
Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. Дисперсия обычно называется средним квадратом отклонений и обозначается . В зависимости от исходных данных дисперсия может вычисляться по средней арифметической простой или взвешенной:
— дисперсия невзвешенная (простая);
— дисперсия взвешенная.
Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается S:
— среднее квадратическое отклонение невзвешенное;
— среднее квадратическое отклонение взвешенное.
Среднее квадратическое отклонение - это обобщающая характеристика абсолютных размеров вариации признака в совокупности. Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т.д.).
Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает собой всю представляемую совокупность.
Вычислению среднего квадратического отклонения предшествует расчет дисперсии.
Порядок расчета дисперсии взвешенную:
1) определяют
среднюю арифметическую
;
2) определяются отклонения вариант от средней
;
3) возводят в квадрат отклонение каждой варианты от средней
;
4) умножают квадраты отклонений на веса (частоты)
;
5) суммируют полученные произведения
;
6) Полученную сумму делят на сумму весов
.
Свойства дисперсии.
Уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсии не изменяет.
Уменьшение или увеличение каждого значения признака на одну и ту же постоянную величину А дисперсии не изменяет.
Уменьшение или увеличение каждого значения признака в какое-то число раз к соответственно уменьшает или увеличивает дисперсию в раз, а среднее квадратическое отклонение - в к раз.
Дисперсия признака относительно произвольной величины всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величиной:
.
Если А равна нулю, то приходим к следующему равенству:
,
т.е. дисперсия признака равна разности между средним квадратом значений признака и квадратом средней.
Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другими.
Порядок расчета дисперсии простой:
1) определяют среднюю арифметическую
;
2) возводят
в квадрат среднюю
;
3) возводят в квадрат каждую варианту ряда ;
4) находим сумму квадратов вариант ;
5) делят сумму квадратов вариант на их число, т.е. определяют средний квадрат
;
6) определяют
разность между средним
Рассмотрим расчет дисперсии в интервальном ряду распределения.
Порядок расчета дисперсии взвешенной (по формуле ):
;
возводят в квадрат полученную среднюю ;
;
Показатели относительного рассеивания.
Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей).
Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.
1. Коэффициент осцилляции отражает относительную колеблемость крайних значений признака вокруг средней.
(1)
2. Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений от средней величины.
(2)
3. Коэффициент вариации.
(3)
Учитывая, что среднеквадратическое отклонение дает обобщающую характеристику колеблемости всех вариантов совокупности, коэффициент вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин. При этом исходят из того, что если V больше 40 %, то это говорит о большой колеблемости признака в изучаемой совокупности.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Ефимов М.Р., Петрова Е.В., Румянцева В.Н. Общая теория статистики. Учебник, - М: ИНФРА-М, 2006
2. Теория статистики. Учебник. Под редакцией Р.А. Шмойловой. - М: ИНФРА-М., 2000.
3. Федеральная целевая программа "Реформирование статистики в 1997 - 2000 годах". Журнал "Вопросы статистики". 1997, №1.
4. Методологические положения по статистике. Вып. 1. Госкомстат России. - М., 2007.
5. Альбом наглядных пособий по общей теории статистики. - М.: Финансы и статистика, 2008.
6. Альбом форм государственного
статистического наблюдения за
деятельностью юридических лиц,
их обособленных подразделений
независимо от форм
7. Общая теория статистики: статистическая
методология в изучении
8. Общая теория статистики. Под
ред. А.Я. Боярского, Г.Л. Громыко издание
второе, переработанное и дополненное
издательство Московского