Автор работы: Пользователь скрыл имя, 16 Мая 2014 в 14:39, реферат
Корреляционный анализ решает две основные задачи:
Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь.
Это очень важно, так как от правильного выбора формы связи зависит конечный результат изучения взаимосвязи между признаками.
Вторая задача состоит в измерении тесноты, т.е. меры связи между признаками с целью установить степень влияния данного фактора на результат.
1 Определение формы связи
2 Выбор формы связи
3 Аналитическое выражение связи
4 Измерение тесноты связи
5 Множественная корреляция
6 Методы измерения тесноты связи
Список использованной литературы
Содержание
Список использованной литературы
1 Определение формы связи
Корреляционный анализ решает две основные задачи:
Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь.
Это очень важно, так как от правильного выбора формы связи зависит конечный результат изучения взаимосвязи между признаками.
Вторая задача состоит в измерении тесноты, т.е. меры связи между признаками с целью установить степень влияния данного фактора на результат.
Она решается математически путем определения параметров корреляционного уравнения.
Затем проводятся оценка и анализ полученных результатов при помощи специальных показателей корреляционного метода (коэффициентов детерминации, линейной и множественной корреляции и т.д.), а также проверка существенности связи между изучаемыми признаками.
2 Выбор формы связи
Определяющая роль в выборе формы связи между явлениями принадлежит теоретическому анализу. Так, например, чем больше размер основного капитала предприятия (факторный признак), тем больше при прочих равных условиях оно выпускает продукции (результативный признак).
С ростом факторного признака здесь, как правило, равномерно растет и результативный, поэтому зависимость между ними может быть выражена уравнением прямой Y=a+b*x, которое называется линейным уравнением регрессии.
Параметр b называется коэффициентом регрессии и показывает, насколько в среднем отклоняется величина результативного признака у при отклонении величины факторного признаках на одну единицу. При x = 0 a = Y. Увеличение количества внесенных удобрений приводит, при прочих равных условиях, к росту урожайности, но чрезмерное внесение их без изменения других элементов к дальнейшему повышению урожайности не приводит, а, наоборот, снижает ее.
Такая зависимость может быть выражена уравнением параболы Y=a+b*x+c*x2.
Параметр c характеризует степень ускорения или замедления кривизны параболы, и при c>0 парабола имеет минимум, а при c<0 - максимум. Параметр b, характеризует угол наклона кривой, а параметр a - начало кривой.
Однако с помощью теоретического анализа не всегда удается установить форму связи. В таких случаях приходится только предполагать о наличии определенной формы связи. Проверить эти предположения можно при помощи графического анализа, который используется для выбора формы связи между явлениями, хотя графический метод изучения связи применяется и самостоятельно.
3 Аналитическое выражение связи
Применение методов корреляционного анализа дает возможность выражать связь между признаками аналитически - в виде уравнения - и придавать ей количественное выражение. Рассмотрим применение приемов корреляционного анализа на конкретном примере.
Допустим, что между стоимостью основного капитала и выпуском продукции существует прямолинейная связь, которая выражается уравнением прямой Y=a+b*x.
Необходимо найти параметры a и b, что позволит определить теоретические значения Y для разных значений x. Причем a и b должны быть такими, чтобы было достигнуто максимальное приближение к первоначальным (эмпирическим) значениям теоретических значений Y. Эта задача решается при помощи способа наименьших квадратов, основное условие которого сводится к определению параметров a и b, таким образом, чтобы
.
Математически доказано, что условие минимума обеспечивается, если параметры a и b, определяются при помощи системы двух нормальных уравнений, отвечающих требованию метода наименьших квадратов:
Первое уравнение есть сумма всех первоначальных уравнений. Второе получается умножением обеих частей уравнения прямой на один и тот же множитель.
Математически доказано, что условие соблюдается, если в качестве такого множителя принять значение факторного признака, т.е. если уравнение прямой умножить на х. Кроме рассмотренных функций связи в экономическом анализе часто применяются степенная, показательная и гиперболическая функции. Степенная функция имеет вид Y=axb.
Параметр b степенного уравнения называется показателем эластичности и указывает, на сколько процентов изменится у при возрастании х на 1 %. При х = 1 a = Y.
Для определения параметров степенной функции вначале ее приводят к линейному виду путем логарифмирования: lg y=lg a+ blg x, а затем строят систему нормальных уравнений:
Решив систему двух нормальных уравнений, находят логарифмы параметров логарифмической функции a и b, а затем и сами параметры a и b. При помощи степенной функции определяют, например, зависимость между фондом заработной платы и выпуском продукции, затратами труда и выпуском продукции и т.д.
Если факторный признака x растет в арифметической прогрессии, а результативный у - в геометрической, то такая зависимость выражается показательной функцией Y=a+bx. Для определения параметров показательной функции ее также вначале приводят к линейному виду путем логарифмирования: lg y=lg a+ xlg b, а затем строят систему нормальных уравнений:
Вычислив соответствующие данные и решив систему двух нормальных уравнений, находят параметры показательной функции a и b.
В ряде случаев обратная связь между факторным и результативным признаками может быть выражена уравнением гиперболы:
Y=a+b/x.
И здесь задача заключается в нахождении параметров a и b при помощи системы двух нормальных уравнений:
При помощи гиперболической функции изучают, например, связь между выпуском продукции и себестоимостью, уровнем издержек обращения (в процентах к товарооборот и товарооборотом в торговле, сроками уборки и урожайностью и т.д.).
Таким образом, применение различных функций в качестве уравнения связи сводится к определению параметров уравнения по способу наименьших квадратов при помощи системы нормальных уравнений.
В малых совокупностях значение коэффициента регрессии подвержено случайным колебаниям. Поэтому возникает необходимость в определении достоверности коэффициента регрессии. Достоверность коэффициента регрессии определяется так же, как и в выборочном наблюдении, т.е. устанавливаются средняя и предельная ошибки для выборочной средней и доли.
Средняя ошибка коэффициента регрессии определяется по формуле:
где σ20 - случайная дисперсия;
σ2 - общая дисперсия,
n - число коррелируемых пар.
4 Измерение тесноты связи
Чтобы измерить тесноту прямолинейной связи между двумя признаками, пользуются парным коэффициентом корреляции, который обозначается r.
Так как при корреляционной связи имеют дело не с приращением функции в связи с изменением аргумента, а с сопряженной вариацией результативных и факторных признаков, то определение тесноты связи, по существу, сводится к изучению этой сопряженности, т.е. того, в какой мере отклонение от среднего уровня одного признака сопряжено с отклонением другого. Это значит, что при наличии полной прямой связи все значения (х-X) и (у-Y) должны иметь одинаковые знаки, при полной обратной - разные, при частичной связи знаки в преобладающем числе случаев будут совпадать, а при отсутствии связи - совпадать примерно в равном числе случаев.
Для оценки существенности коэффициента корреляции пользуются специально разработанной таблицей критических значений r.
Коэффициент корреляции r применяется только в тех случаях, когда между явлениями существует прямолинейная связь. Если же связь криволинейная, то пользуются индексом корреляции, который рассчитывается по формуле:
где у - первоначальные значения;
- среднее значение;
Y - теоретические (выровненные) значения переменной величины.
Показатель остаточной, случайной дисперсии определяется по формуле:
Она характеризует размер отклонений эмпирических значений результативного признака у от теоретических Y, т.е. случайную вариацию.
Общая дисперсия:
характеризует размер отклонений эмпирических значений результативного признака у от , т.е. общую вариацию.
Отношение случайной дисперсии к общей характеризует долю случайной вариации в общей вариации, а
есть не что иное, как доля факторной вариации в общей, потому что по правилу сложения дисперсий общая дисперсия равна сумме факторной и случайной дисперсий:
σ2=σ2Y+σ20.
Подставим в формулу индекса корреляции соответствующие обозначения случайной, общей и факторной дисперсий и получим:
Таким образом, индекс корреляции характеризует долю факторной вариации в общей:
однако с той лишь разницей, что вместо групповых средних берутся теоретические значения Y.
Индекс корреляции по своему абсолютному значению колеблется в пределах от 0 до 1.
При функциональной зависимости случайная вариация , индекс корреляции равен 1. При отсутствии связи R = 0, потому что Y=y.
Коэффициент корреляции является мерой тесноты связи только для линейной формы связи, а индекс корреляции - и для линейной, и для криволинейной. При прямолинейной связи коэффициент корреляции по своей абсолютной величине равен индексу корреляции:
|r|=R.
Если индекс корреляции возвести в квадрат, то получим коэффициент детерминации
R2=σ2Y/σ2.
Он характеризует роль факторной вариации в общей вариации и по построению аналогичен корреляционному отношению η2.
Как и корреляционное отношение, коэффициент детерминации R2может быть исчислен при помощи дисперсионного анализа, так как дисперсионный анализ позволяет расчленить общую дисперсию на факторную и случайную.
Однако при дисперсионном анализе для разложения дисперсии пользуются методом группировок, а при корреляционном анализе - корреляционными уравнениями.
Коэффициент детерминации является наиболее конкретным показателем, так как он отвечает на вопрос о том, какая доля в общем результате зависит от фактора, положенного в основание группировки.
При прямолинейной парной связи факторную дисперсию можно определить без вычисления теоретических значений Y по следующей формуле:
5 Множественная корреляция
До сих пор мы рассматривали корреляционные связи между двумя признаками: результативным (у) и факторным (х). Например, выпуск продукции зависит не только от размера основного капитала, но и от уровня квалификации рабочих, состояния оборудования, обеспеченности и качества сырья и материалов, организации труда и т.д. В связи с этим возникает необходимость в изучении, измерении связи между результативным признаком, двумя и более факторными. Этим занимается множественная корреляция.
Множественная корреляция решает три задачи. Она определяет:
Определение формы связи.
Определение формы связи сводится обычно к отысканию уравнения связно с факторами x,z,w,...v. Так, линейное уравнение зависимости результативного признака от двух факторных определяется по формуле
=a0+a1x+a2z
Для определения параметров а0, a1и а2, по способу наименьших квадратов необходимо решить следующую систему трех нормальных уравнений:
Измерение тесноты связи.
При определении тесноты связи для множественной зависимости пользуются коэффициентом множественной (совокупной) корреляции, предварительно исчислив коэффициенты парной корреляции. Так, при изучении связи между результативным признаком y и двумя факторными признаками - х и z, нужно предварительно определить тесноту связи между у и х, между у и z, т.е. вычислить коэффициенты парной корреляции, а затем для определения тесноты связи результативного признака от двух факторных исчислить коэффициент множественной корреляции по следующей формуле:
где rxy, rzy, rzx - парные коэффициенты корреляции.
Коэффициент множественной корреляции колеблется в пределах от 0 до 1. Чем он ближе к 1, тем в большей мере учтены факторы, определяющие конечный результат.