Статистико-экономический анализ безработицы

Автор работы: Пользователь скрыл имя, 02 Апреля 2014 в 07:37, курсовая работа

Краткое описание

Целью данной курсовой работы является изучение динамики уровня безработицы в г. Александровске Пермского края.
Для достижения поставленной цели были определены следующие задачи:
- рассмотреть понятие, причины и виды безработицы;
- выявить проблемы регулирования уровня безработицы;
- проанализировать уровень безработицы на современном этапе.

Содержание

Введение …………………………………………………………………

1.
Система показателей рынка труда: задачи, основные категории рынка труда, методика анализа, уровень безработицы – экономическая сущность и значение показателя, методика исчисления.

2.
Краткая характеристика объекта исследования (страна, край, округ, район).

3.
Анализ уровня безработицы (период анализа не менее 5 лет)


а) организация статистического наблюдения за уровнем безработицы


б) динамика численности безработных (всего и с назначенными пособием). Рассчитать показатели анализа рядов динамики (цепные, базисные, средние) (табл.)


в) изучить динамику уровня безработицы (трудоспособное население в возрасте 17-72 г.) (рис.)


г) при помощи комбинированных группировок (в подлежащем таблицы – год, факторный признак, пол), изучить зависимость уровня безработицы от: возраста и пола, образования и пола, обстоятельств незанятости и пола, способа поиска работы и пола, продолжительности поиска работы и пола, средней продолжительности поиска работы и пола.


д) при помощи коэффициента ассоциации (контингенции) определить тесноту связи между полом человека и уровнем безработицы. Для этого предварительно построить четырехклеточную таблицу, где будут фиксироваться чистота альтернативных признаков: мужчины – женщины и занятые –безработных (табл.)


ж) изучить масштабы трудоустройства населения органам государственной службы занятости и удовлетворения потребности в работниках по отраслям экономики (комбинированные таблицы)


з) сделать аналитическое выравнивание численности безработных. Для этого предварительно определить тип уравнения тренда (7). Сделать прогноз на ближайшие годы, оценить качество прогноза.


и) сгруппировать города и районы по уровню зарегистрированной безработицы (подлежащее таблицы), в сказуемом таблицы – численность незанятых, безработных. Для этого предварительно построить ряды распределения их графически в виде огивы и гистограммы и на основе их анализа выделить 3-4 группы для сводки (последний год)

Выводы и предложения ………………………………………………….

Список использованных источников …………………………………

Вложенные файлы: 1 файл

курсовая Статистика.doc

— 1.69 Мб (Скачать файл)

При помощи коэффициента ассоциации (контингенции) определим тесноту связи между полом и уровнем безработицы Александровского района. Для этого построим таблицу, где будет фиксироваться число занятых и незанятых граждан, обратившихся в ЦЗН за содействием в поиске походящей работы.

Таблица 6

Обратившиеся граждане за содействием в ЦЗН по категориям занятости за 2007 – 2009 гг. по Александровскому району

 

Занятые

Незанятые

Итого:

Мужчины

611 (a)

2798 (b)

3409 (a+b)

Женщины

440 (c)

3100 (d)

3540 (c+d)

Итого:

1051 (a+c)

5898 (b+d)

6949 (a+b+c+d)


 

 

 

При помощи коэффициентов ассоциации и контингенции, разработанных известными английскими статистами Д.Юлом и К.Пирсоном. Расчеты производятся по формулам:

1. Коэффициент ассоциации:

Наблюдается очень слабая прямая связь между полом и занятостью и незанятостью населения.

Предельное абсолютное значение коэффициента может быть близко к единице.

Коэффициент ассоциации непригоден для расчета в том случае, если одна из частот по диагонали равна 0. В этом случае применяется коэффициент контингенции, который рассчитывается по формуле:

2. Коэффициент контингенции:

 

Коэффициент контингенции также указывает на практическое отсутствие связи между признаками (его величина всегда меньше А).

 

 

 

 

3.6. Изучить масштабы трудоустройства населения органам государственной службы занятости и удовлетворения потребности в работниках по отраслям экономики (комбинированные таблицы)

 

3.7. Сделать аналитическое выравнивание численности безработных. Для этого предварительно определить тип уравнения тренда. Сделать прогноз на ближайшие годы, оценить качество прогноза.

9.6. Методика измерения  параметров тренда 

 

Когда тип тренда установлен, необходимо вычислить оптимальные значения параметров тренда исходя из фактических уровней. Для этого обычно используют метод наименьших квадратов (МНК). Его значение уже рассмотрено в предыдущих главах учебного пособия, в данном случае оптимизация состоит в минимизации суммы квадратов отклонений фактических уровней ряда от выравненных уровней (от тренда). Для каждого типа тренда МНК дает систему нормальных уравнений, решая которую вычисляют параметры тренда. Рассмотрим лишь три такие системы: для прямой, для параболы 2-го порядка и для экспоненты. Приемы определения параметров других типов тренда рассматриваются в специальной монографической литературе.

Для линейного тренда нормальные уравнения МНК имеют вид:

 

Нормальные уравнения МНК для экспоненты имеют следующий вид:

 

По данным табл. 9.1 рассчитаем все три перечисленных тренда для динамического ряда урожайности картофеля с целью их сравнения (см. табл. 9.5).

 

 

 

 

 

Таблица 9.5

Расчет параметров трендов

 

 

Согласно формуле (9.29) параметры линейного тренда равны а = 1894/11 = 172,2 ц/га; b = 486/110 = 4,418 ц/га. Уравнение линейного тренда имеет вид:

у? = 172,2 + 4,418t, где t = 0 в 1987 г Это означает,что средний фактический и выравненный уровень, отнесенный к середине периода, т.е. к 1991 г., равен 172 ц с 1 ra a среднегодовой прирост составляет 4,418 ц/га в год

Параметры параболического тренда согласно (9.23) равны- b = 4,418; a = 177,75; с = -0,5571. Уравнение параболического тренда имеет вид у? = 177,75 + 4,418t - 0.5571t2; t = 0 в 1991 г. Это означает, что абсолютный прирост урожайности замедляется в среднем на 2·0,56 ц/га в год за год. Сам же абсолютный прирост уже не является константой параболического тренда, а является средней величиной за период. В год, принятый за начало отсчета т.е. 1991 г., тренд проходит через точку с ординатой 77,75 ц/га; Свободный член параболического тренда не является средним уровнем за период. Параметры экспоненциального тренда вычисляются по формулам(9.32) и (9.33)  lnа = 56,5658/11 = 5,1423; потенцируя, получаем а = 171,1; lnk = 2,853:110 = 0,025936; потенцируя, получаем k = 1,02628.

Уравнение экспоненциального тренда имеет вид: y? = 171,1·1,02628t.

Это означает, что среднегодовой темп поста урожайности за период составил 102,63%. В точке принятК начало отсчета, тренд проходит точку с ординатой 171,1 ц/га.

Рассчитанные по уравнениям трендов уровни записаны в трех последних графах табл. 9.5. Как видно по этим данным. расчетные значения уровней по всем трем видам трендов различаются ненамного, так как и ускорение параболы, и темп роста экспоненты невелики. Существенное отличие имеет парабола - рост уровней с 1995 г. прекращается, в то время как при линейном тренде уровни растут и далее, а при экспоненте их ост ускоряется. Поэтому для прогнозов на будущее эти три тренда неравноправны: при экстраполяции параболы на будущие годы уровни резко разойдутся с прямой и экспонентой, что видно из табл. 9.6. В этой таблице представлена распечатка решения на ПЭВМ по программе «Statgraphics» тех же трех трендов. Отличие их свободных членов  от приведенных выше объясняется тем, что программа нумерует года не от середины, а от начала, так что свободные члены трендов относятся к 1986 г., для которого t = 0. Уравнение экспоненты на распечатке оставлено в логарифмированном виде. Прогноз сделан на 5 лет вперед, т.е. до 2001 г.. При изменении начала координат (отсчета времени) в уравнении параболы меняется и средний абсолютной прирост, параметр b. так как в результате отрицательного ускорения прирост все время сокращается, а его максимум - в начале периода. Константой параболы является только ускорение.

 

 

В строке «Data» приводятся уровни исходного ряда; «Forecast summary» означает сводные данные для прогноза. В следующих строках - уравнения прямой, параболы, экспоненты - в логарифмическом виде. Графа ME означает среднее расхождение между уровнями исходного ряда и уровнями тренда (выравненными). Для прямой и параболы это расхождение всегда равно нулю. Уровни экспоненты в среднем на 0,48852 ниже уровней исходного ряда. Точное совпадение возможно,, если истинный тренд - экспонента; в данном случае совпадения нет, но различие , мало. Графа МАЕ -это дисперсия s2 - мера колеблемости фактических уровней относительно тренда, о чем сказано в п. 9.7. Графа МАЕ - среднее линейное отклонение уровней от тренда по модулю (см. параграф 5.8); графа МАРЕ - относительное линейное отклонение в процентах. Здесь они приведены как показатели пригодности выбранного вида тренда. Меньшую дисперсию и модуль отклонения имеет парабола: она за период 1986 - 1996 гг. ближе к фактическим уровням. Но выбор типа тренда нельзя сводить лишь к этому критерию. На самом деле замедление прироста есть результат большого отрицательного отклонения, т. е. неурожая в 1996 г.

Вторая половина таблицы - это прогноз уровней урожайности по трем видам трендов на годы; t = 12, 13, 14, 15 и 16 от начала отсчета (1986 г.). Прогнозируемые уровни по экспоненте вплоть до 16-го года ненамного выше,.чем по прямой. Уровни тренда-параболы - снижаются, все более расходясь с другими трендами.

Как видно в табл. 9.4, при вычислении параметров тренда уровни исходного ряда входят с разными весами - значениями tp и их квадратов. Поэтому влияние колебаний уровней на параметры тренда зависит от того, на какой номер года приходится урожайный либо неурожайный год. Если резкое отклонение приходится на год с нулевым номером (ti = 0), то оно никакого влияния на параметры тренда не окажет, а если попадет на начало и конец ряда, то повлияет сильно. Следовательно, однократное аналитическое выравнивание неполно освобождает параметры тренда от влияния колеблемости, и при сильных колебаниях они могут быть сильно искажены, что в нашем примере случилось с параболой. Для дальнейшего исключения искажающего влияния колебаний на параметры тренда следует применить метод многократного скользящего выравнивания.

Этот прием состоит в том, что параметры тренда вычисляются не сразу по всему ряду, а скользящим методом, сначала за первые т периодов времени или моментов, затем за период от 2-го до т + 1, от 3-го до (т + 2)-го уровня и т.п. Если число исходных уровней ряда равно п, а длина каждой скользящей базы расчета параметров равна т, то число таких скользящих баз t или отдельных значений параметров, которые будут по ним определены, составит:

L = п + 1 - т.

Применение методики скользящего многократного выравнивания рассматривать, как видно из приведенных расчетов, возможно только при достаточно большом числе уровней ряда, как правило 15 и более. Рассмотрим эту методику на примере данных табл. 9.4 -динамики цен на нетопливные товары развивающихся стран, что опять же дает возможность читателю участвовать в небольшом научном исследовании. На этом же примере продолжим и методику прогнозирования в разделе 9.10.

Если вычислять в нашем ряду параметры по 11 -летним периодам (по 11 уровням), то t = 17 + 1 - 11 = 7. Смысл многократного скользящего выравнивания в том, что при последовательных сдвигах базы расчета параметров на концах ее и в середине окажутся разные уровни с разными по знаку и величине отклонениями от тренда. Поэтому при одних сдвигах базы параметры будут завышаться, при других - занижаться, а при последующем усреднении значений параметров по всем сдвигам базы расчета произойдет дальнейшее взаимопогашение искажений параметров тренда колебаниями уровней.

Многократное скользящее выравнивание не только позволяет получить более точную и надежную оценку параметров тренда, но и осуществить контроль правильности выбора типа уравнения тренда. Если окажется, что ведущий параметр тренда, его константа при расчете по скользящим базам не беспорядочно колеблется, а систематически изменяет свою величину существенным образом, значит, тип тренда был выбран неверно, данный параметр константой не является.

Что касается свободного члена при многократном выравнивании, то нет необходимости и, более того, просто неверно вычислять его величину как среднюю по всем сдвигам базы, ибо при таком способе отдельные уровни исходного ряда входили бы в расчет средней с разными весами, и сумма выравненных уровней разошлась бы с суммой членов исходного ряда. Свободный член тренда - это средняя величина уровня за период, при условии отсчета времени от середины периода. При отсчете от начала, если первый уровень ti = 1, свободный член будет равен: a0 = у? - b((N-1)/2). Рекомендуется длину скользящей базы расчета параметров тренда выбирать не менее 9-11 уровней, чтобы в достаточной мере погасить колебания уровней. Если исходный ряд очень длинный, база может составлять до 0,7 - 0,8 его длины. Для устранения влияния долго-периодических (циклических) колебаний на параметры тренда, число сдвигов базы должно быть равно или кратно длине цикла колебаний. Тогда начало и конец базы будут последовательно «пробегать» все фазы цикла и при усреднении параметра по всем сдвигам его искажения от циклических колебаний будут взаимопогашаться. Другой способ - взять длину скользящей базы, равной длине цикла, чтобы начало базы и конец базы всегда приходились на одну и ту же фазу цикла колебаний.

Поскольку по данным табл. 9.4, уже было установлено, что тренд имеет линейную форму, проводим расчет среднегодового абсолютного прироста, т. е. параметра b уравнения линейного тренда скользящим способом по 11-летним базам (см. табл. 9.7). В ней же приведен расчет данных, необходимых для последующего изучения колеблемости в параграфе 9.7. Остановимся подробнее на методике многократного выравнивания по скользящим базам. Рассчитаем параметр b по всем базам:

 

Уравнение тренда: у? = 104,53 - 1,433t; t = 0 в 1987 г. Итак, индекс цен в среднем за год снижался на 1,433 пункта. Однократное выравнивание по всем 17 уровням может исказить этот параметр, ибо начальный уровень содержит значительное отрицательное отклонение, а конечный уровень - положительное. В самом деле, однократное выравнивание дает величину среднегодового изменения индекса всего на 0,953 пункта.

Проверка на наличие тренда в ряду динамики может быть осуществлена по нескольким критериям.

  1. Метод средних. Изучаемый ряд динамики разбивается на несколько интервалов (обычно на два) , для каждого из которых определяется средняя величина ( ) . Выдвигается гипотеза о существенном различии средних . Если эта гипотеза принимается , то признается наличие тренда .
  2. Фазочастотный критерий знаков первой разности (критерий Валлиса и Мура) . Суть его заключается в следующем : наличие тренда в динамическом ряду утверждается в том случае , если этот ряд не содержит либо содержит в приемлемом количестве фазы – изменение знака разности первого порядка (абсолютного цепного прироста).
  3. Критерий Кокса и Стюарта . Весь анализируемый ряд динамики разбивают на три равные по числу уровней группы (в том случае , когда число уровней ряда не делится на три , недостающие уровни надо добавить) и сравнивают между собой уровни первой и последней групп .
  4. Метод серий . По этому способу каждый конкретный уровень временного ряда считается принадлежащим к одному из двух типов : например , если уровень ряда меньше медианного значения , то считается , что он имеет тип А , в противном случае – тип В. Теперь последовательность уровней выступает как последовательность типов . В образовавшейся последовательности типов определяется число серий (серия – любая последовательность элементов одинакового типа , с обоих сторон граничащая с элементами другого типа).

Если в ряду динамики общая тенденция к росту или снижению отсутствует , то количество серий является случайной величиной , распределенной приближенно по нормальному закону (для n > 10) . Следовательно , если закономерности в изменениях уровней нет , то случайная величина R оказывается в доверительном интервале

 

.

 

Параметр t назначается в соответствии с принятым уровнем доверительной вероятности Р.

Среднее число серий вычисляется по формуле 22 :

 

                                           .                                  (22)

 

Среднее квадратическое отклонение числа серий вычисляется по формуле 23 :

 

                                          .                             (23)

Информация о работе Статистико-экономический анализ безработицы