Автор работы: Пользователь скрыл имя, 16 Сентября 2012 в 15:18, реферат
Процесс развития, движения социально-экономических явле¬ний во времени в статистике принято называть динамикой. Для отображения динамики строят ряды динамики (хронологичес¬кие, временные), которые представляют собой ряды изменяющих¬ся во времени значений статистического показателя, расположен¬ных в хронологическом порядке. В нем процесс экономического развития изображается в виде совокупности дискретных значений , отражающих изменение параметров экономической системы во времени.
где п - число цепных абсолютных приростов () в изучаемом
периоде.
Средний абсолютный прирост определим через накопленный (базисный) абсолютный прирост (Δуб)- Для случая равных интервалов применим следующую формулу:
где т - число уровней ряда динамики в изучаемом периоде, включая базисный.
Сводной обобщающей характеристикой интенсивности изменения уровней ряда динамики служит средний темп роста (снижения), показывающий, во сколько раз в среднем за единицу времени изменяется уровень ряда динамики.
Средний темп роста (снижения) — обобщенная характеристика индивидуальных темпов роста ряда динамики. В качестве основы и критерия правильности исчисления среднего темпа роста (снижения) применяется определяющий показатель — произведение цепных темпов роста, равное темпу роста за весь рассматриваемый период. Следовательно, если значение признака образуется как произведение отдельных вариантов, нужно применять среднюю геометрическую.
Поскольку средний темп роста представляет собой средний
коэффициент роста, выраженный в процентах ( = *100).
, то для равностоящих рядов динамики расчеты по средней геометрической сводятся к исчислению средних коэффициентов роста из цепных коэффициентов роста (по «цепному способу»):
где п — число цепных коэффициентов роста;
Кцр1 , ..., Кцрп - цепные коэффициенты роста;
Кбр — базисный коэффициент роста за весь период.
Если известны уровни динамического ряда, то расчет среднего коэффициента роста упрощается. Так как произведение Цепных коэффициентов роста равно базисному, то в подкоренное выражение подставляется базисный коэффициент роста. Базисный коэффициент получается непосредственно как частное от деления уровня последнего периода уп на уровень базисного периода у0.
Тогда формула для расчета среднего коэффициента роста для равностоящих рядов динамики (по «базисному способу»):
где т - число уровней ряда динамики в изучаемом периоде, включая базисный.
Средние темпы прироста (сокращения) рассчитываются на основе средних темпов роста, вычитанием из последних 100 %. Соответственно при исчислении средних коэффициентов прироста из значений коэффициентов роста вычитается единица:
где - средний темп прироста, — средний коэффициент прироста
Если уровни ряда динамики снижаются, то средний темп роста будет меньше 100%, а средний темп прироста — отрицательной величиной. Отрицательный темп прироста представляет собой средний темп сокращения и характеризует среднюю относительную скорость снижения уровня.
Сравнительные характеристики направления и интенсивности роста одновременно развивающихся во времени явлений определяются приведением рядов динамики к общему (единому) основанию и расчетом коэффициентов опережения (отставания).
Ряды динамики (в которых возникают, например, проблемы сопоставимости цен сравниваемых стран, методики расчета сравниваемых показателей и т.п.) приводят к одному основанию, если они не могут быть решены другими методами. По исходным уровням нескольких рядов динамики определяют относительные величины — базисные темпы роста или прироста. Принятый при этом за базу сравнения период времени (дата) выступает в качестве постоянной базы расчетов темпов роста для каждого из изучаемых рядов динамики. В зависимости от целей исследования базой может быть начальный, средний или другой уровень ряда.
Сравнение интенсивности изменений уровней рядов во времени возможно с помощью коэффициентов опережения (отставания),
представляющих собой отношение базисных темпов роста (или прироста) двух рядов динамики за одинаковые отрезки времени:
где , ,— базисные темпы роста и прироста
первого и второго рядов динамики (соответственно).
Коэффициенты опережения (отставания) могут быть исчислены на основе сравнения средних темпов роста (или прироста) двух динамических рядов за одинаковый период времени:
где ,- средние темпы роста первого и второго рядов динамики соответственно; п — число лет в периоде.
Коэффициент опережения (отставания) показывает, во сколько раз быстрее растет (отстает) уровень одного ряда динамики по сравнению с другим. При этом сравнении темпы должны характеризовать тенденцию одного направления.
Важной задачей статистики является определение в рядах динамики общей тенденции развития явления.
Иногда закономерность изменения явления, общая тенденция его развития отчетливо отражается уровнями динамического ряда (уровни на изучаемом периоде непрерывно растут или непрерывно снижаются).
Однако часто приходится встречаться с такими рядами динамики, в которых уровни ряда постоянно изменяются (то возрастают, то убывают), и общая тенденция неясна.
На развитие явления во времени оказывают влияние факторы, различные по характеру и силе воздействия. Одни из них оказывают практически постоянное воздействие и формируют в рядах динамики определенную тенденцию развития. Воздействие же других факторов может быть кратковременным или носить случайный характер.
Поэтому при анализе динамики речь идет не просто о тенденции развития, а об основной тенденции.
Основной тенденцией развития (трендом) называется плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний.
Задача состоит в том, чтобы выявить общую тенденцию в изменении уровней ряда, освобожденную от действия различных случайных факторов. С этой целью ряды динамики подвергаются обработке методами укрупнения интервалов, скользящей средней и аналитического выравнивания.
Одним из наиболее простых методов изучения основной тенденции в рядах динамики является укрупнение интервалов. Он основан на укрупнении периодов времени, к которым относятся уровни ряда динамики (одновременно уменьшается количество интервалов). Например, ряд ежесуточного выпуска продукции заменяется рядом месячного выпуска продукции и т.д. Средняя, исчисленная по укрупненным интервалам, позволяет выявлять направление и характер (ускорение или замедление роста) основной тенденции развития.
Выявление основной тенденции может осуществляться также методом скользящей (подвижной) средней. Сущность его заключается в том, что исчисляется средний уровень из определенного числа, обычно нечетного (3, 5, 7 и т.д.), первых по счету уровней ряда, затем — из такого же числа уровней, но начиная со второго по счету, далее — начиная с третьего и т.д. Таким образом, средняя как бы «скользит» по ряду динамики, передвигаясь на один срок.
Недостатком сглаживания ряда является «укорачивание» сглаженного ряда по сравнению с фактическим, а следовательно, потеря информации.
Рассмотренные приемы дают возможность определить общую тенденцию развития явления, более или менее освобожденную от случайных и волнообразных колебаний. Однако получить обобщенную статистическую модель тренда нельзя.
Для того чтобы дать количественную модель, выражающую основную тенденцию изменения уровней динамического ряда во времени, используется аналитическое выравнивание ряда динамики.
Основным содержанием метода аналитического выравнивания в рядах динамики является то, что общая тенденция развития рассчитывается как функция времени:
где— уровни динамического ряда, вычисленные по соответствующему аналитическому уравнению на момент времени t.
Определение теоретических (расчетных) уровней производится на основе адекватной математической модели, которая отображает (аппроксимирует) основную тенденцию ряда динамики.
Выбор типа модели зависит от цели исследования и должен быть основан на теоретическом анализе, выявляющем характер развития явления, а также на графическом изображении ряда динамики (линейной диаграмме).
Простейшими моделями (формулами), выражающими тенденцию развития, являются:
линейная функция — прямая = а0 + a1t,
показательная функция-,
степенная функция — кривая второго порядка (парабола)
В тех случаях, когда требуется особо точное изучение тенденции развития (например, модели тренда для прогнозирования), при выборе вида адекватной функции можно использовать специальные критерии математической статистики.
Расчет параметров функции производится методом наименьших квадратов, в котором в качестве решения принимается точка минимума суммы квадратов отклонений между теоретическими и эмпиричесими уровнями:
где - выравненные (расчетные) уровни; уi - фактические уровни. Параметры уравнения аi удовлетворяющие этому условию, могут быть найдены решением системы нормальных уравнений. На основе найденного уравнения тренда вычисляются выравненные уровни. Таким образом, выравнивание ряда динамики заключается в замене фактических уровней уi изменяющимися уровнями, наилучшим образом аппроксимирующими статистические данные.
• Выравнивание по прямой используется в тех случаях, когда абсолютные приросты практически постоянны, т. е. когда уровни изменяются в арифметической прогрессии (или близко к ней).
• Выравнивание по показательной функции используется в тех случаях, когда ряд отражает развитие в геометрической прогрессии, т. е. когда цепные коэффициенты роста практически постоянны.
Рассмотрим «технику» выравнивания ряда динамики по прямой:
= а0 + a1t,
Параметры а0 и а1 согласно методу наименьших квадратов находятся решением следующей системы нормальных уравнений, полученной путем алгебраического преобразования условия:
где у — фактические (эмпирические) уровни ряда; t — время (порядковый номер периода или момента времени).
Расчет параметров упрощается, если за начало отсчета времени (t = 0) принять центральный интервал (момент).
При четном числе уровней (например, 4), значения t — условного обозначения времени будут такими (это равнозначно измерению времени не в годах, а в полугодиях):.
1996г. 1997г. 1998г. 1999г.
-3 -1 +1 +3
При нечетном числе уровней (например, 5) значения устанавливаются по-другому:
1996 г 1997г. 1998г. 1999г. 2000г.
-2 -1 0 +1 +2
В обоих случаях Σ t = 0, так что система нормальных уравнений принимает вид:
Из первого уравнения
Из второго уравнения
При сравнении квартальных и месячных данных многих социально-экономических явлений часто обнаруживаются периодические колебания, возникающие под влиянием смены времен года. Они являются результатом влияния природно-климатических условий, общих экономических факторов, а также многочисленных и разнообразных факторов, которые часто являются регулируемыми.
K сезонным относят все явления, которые обнаруживают в своем развитии отчетливо выраженную закономерность внутригодовых изменений, т. е. более или менее устойчиво повторяющиеся из года в год колебания уровней.
В статистике периодические колебания, которые имеют определенный и постоянный период, равный годовому промежутку, носят название «сезонные колебания» или «сезонные волны», а динамический ряд в этом случае называют сезонным рядом динамики.
Значительной колеблемости во внутригодовой динамике подвержены денежное обращение и товарооборот. Сезонные колебания отрицательно влияют на результаты производственной деятельности, вызывая нарушения ритмичности производства.
Комплексное регулирование сезонных изменений должно основываться на исследовании сезонных колебаний.
Cуществует ряд методов изучения и измерения сезонных колебаний. Самый простой заключается в построении специальных показателей, которые называются индексами сезонности Is Совокупность этих показателей отражает сезонную волну.
Информация о работе Статистическое изучение динамики социально-экономических явлений