Автор работы: Пользователь скрыл имя, 17 Марта 2014 в 12:40, шпаргалка
Основные понятия математической статистики (переменная, признак, уровень, показатель, эмпирические данные, измерительные шкалы).
Признаки и переменные - это измеряемые психологические явления. Такими явлениями могут быть время решения задачи, количество допущенных ошибок, уровень тревожности, показатель интеллектуальной лабильности, интенсивность агрессивных реакций, угол поворота корпуса в беседе, показатель социометрического статуса и множество других переменных.
Понятия признака и переменной могут использоваться как взаимозаменяемые
Гипотезы
H0: Между выборками 1, 2, 3 и т. д. существуют лишь случайные различия по уровню исследуемого признака.
H1: Между выборками 1, 2, 3 и
т. д. существуют неслучайные
Ограничения критерия Н
При сопоставлении 3-х выборок допускается, чтобы в одной из них n=3, а двух других п=2. Но при таких численных составах выборок мы сможем установить различия лишь на низшем уровне значимости (Р≤0,05).
Для того, чтобы оказалось
возможным диагностировать
При большем количестве выборок и испытуемых в каждой выборке необходимо пользоваться Таблицей критических значений критерия X2, поскольку критерий Крускала-Уоллиса асимптотически приближается к распределению X2.
Количество степеней свободы при этом определяется по формуле: v=c-l где с - количество сопоставляемых выборок.
3. При множественном сопоставлении выборок достоверные различия между какой-либо конкретной парой (или парами) их могут оказаться стертыми. Это ограничение можно преодолеть, если провести все возможные попарные сопоставления, число которых будет равняться ½*[c*(c-1)]*1. Для таких попарных сопоставлений используется, естественно, критерий для двух выборок, например U или φ*.
Назначение критерия S
Критерий S предназначен
для выявления тенденций
Описание критерия S
Критерий S позволяет нам
упорядочить обследованные
Мы сможем утверждать,
что на первом месте по
Если обследованы выборки,
различающиеся по качественным
признакам (профессии, национальности,
месту работы и т. п.), то с
помощью критерия S мы сможем упорядочить
выборки по количественно
Если обследованы выборки,
различающиеся или специально
сгруппированные по
Меру связи между
количественно измеренными
а) критерий тенденций S более прост в подсчете;
б) он применим и
в тех случаях, когда один из
признаков варьирует в узком
диапазоне, например, принимает всего
3 или 4 значения, в то время как
при подсчете ранговой корреляц
Критерий S основан на
способе расчета, близком к принципу
критерия Q Розенбаума. Все выборки
располагаются в порядке
При упорядочивании
выборок мы можем опираться
на средние значения в каждой
выборке или даже на суммы
всех значений в каждой
Для каждого индивидуального значения подсчитывается количество значений справа, превышающих его по величине. Если тенденция возрастания признака слева направо существенна, то большая часть значений справа должна быть выше. Критерий S позволяет определить, преобладают ли справа более высокие значения или нет. Статистика S отражает степень этого преобладания. Чем выше эмпирическое значение S, тем тенденция возрастания признака является более существенной.
Следовательно, если Sэмп
равняется критическому значени
Гипотезы
H0: Тенденция возрастания
значений признака при
H1: Тенденция возрастания
значений признака при
Ограничения критерия S
1. В каждой из сопоставляемых
выборок должно быть
Например, если в двух выборках по 7 наблюдений, а в третьей - 11, то 4 из них необходимо отсеять. Для этого карточки с индивидуальными значениями переворачиваются лицевой стороной вниз и перемешиваются, а затем из них случайным образом извлекается 7 карточек. Оставшиеся 4 карточки с индивидуальными значениями не включаются в дальнейшее рассмотрение и в подсчет критерия S. Ясно, что при таком подходе часть информации утрачивается, и общая картина может быть искажена.
Если исследователь хочет избежать этого, ему следует воспользоваться критерием Н, позволяющим выявить различия между тремя и более выборками без указания на направление этих различий.
2. Нижний порог: не менее 3 выборок и не менее 2 наблюдений в каждой выборке. Верхний порог в существующих таблицах: не более 6 выборок и не более 10 наблюдений в каждой выборке. При большем количестве выборок или наблюдений в них придется пользоваться критерием Н Крускала-Уоллиса.
Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков.
Для подсчета ранговой корреляции необходимо располагать двумя рядами значений, которые могут быть проранжированы. Такими рядами значений могут быть:
1) два признака, измеренные в одной и той же группе испытуемых;
2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков;
3) две групповые иерархии признаков,
4) индивидуальная и групповая иерархии признаков.
Вначале показатели ранжируются отдельно по каждому из признаков.
Как правило, меньшему значению признака начисляется меньший ранг.
В первом случае (два признака) ранжируются индивидуальные значения по первому признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму признаку.
Если два признака связаны положительно, то испытуемые, имеющие низкие ранги по одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по одному из признаков, будут иметь по другому признаку также высокие ранги. Для подсчета rs необходимо определить разности (d) между рангами, полученными данным испытуемым по обоим признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем меньше разности между рангами, тем больше будет rs, тем ближе он будет к +1.
Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет никакого соответствия. Формула составлена так, что в этом случае rs окажется близким к 0.
В случае отрицательной корреляции низким рангам испытуемых по одному признаку будут соответствовать высокие ранги по другому признаку, и наоборот. Чем больше несовпадение между рангами испытуемых по двум переменным, тем ближе rs к -1.
Во втором случае (два индивидуальных профиля), ранжируются индивидуальные значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг – признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в одних и тех же единицах, иначе ранжирование невозможно.
Если индивидуальные иерархии двух испытуемых связаны положительно, то признаки, имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот.
В третьем случае (два групповых профиля), ранжируются среднегрупповые значения, полученные в 2-х группах испытуемых по определенному, одинаковому для двух групп, набору признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.
В случае 4-ом (индивидуальный и групповой профили), ранжируются отдельно индивидуальные значения испытуемого и среднегрупповые значения по тому же набору признаков, которые получены, как правило, при исключении этого отдельного испытуемого – он не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и групповой профили.
Во всех четырех случаях значимость полученного коэффициента корреляции определяется по количеству ранжированных значений N. Если абсолютная величина rs достигает критического значения или превышает его, корреляция достоверна.
Гипотезы.
Возможны два варианта гипотез. Первый относится к случаю 1, второй – к трем остальным случаям.
Первый вариант гипотез
h0: Корреляция между переменными А и Б не отличается от нуля.
h1: Корреляция между переменными А и Б достоверно отличается от нуля.
Второй вариант гипотез
h0: Корреляция между иерархиями А и Б не отличается от нуля.
h1: Корреляция между иерархиями А и Б достоверно отличается от нуля.
Ограничения коэффициента ранговой корреляции
1. По каждой переменной должно быть представлено не менее 5 наблюдений. Верхняя граница выборки определяется имеющимися таблицами критических значений.
2. Коэффициент ранговой корреляции Спирмена rs при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений. В случае, если это условие не соблюдается, необходимо вносить поправку на одинаковые ранги.
Информация о работе Шпаргалка по "Математической статистике"