Автор работы: Пользователь скрыл имя, 26 Апреля 2014 в 00:12, шпаргалка
1 вопрос: Предмет, метод и задачи статистики
Статистика- самостоятельная общественная наука. Она изучает количественную сторону массовых общественных явлений внеразрывной связи с их качественной стороны и следует количественное выражение закономерности. Закономерности развития в конкретных условиях места и времени.
Коэффициент контингенции всегда меньше коэффициента ассоциации. Связь считается подтвержденной, если или .
42. Непараметрические методы: коэффициенты взаймной сопряженности Пирсона и Чупрова.
Коэффициенты взаимной сопряженности Пирсона (С) и Чупрова (К):
где f2 – показатель средней квадратической сопряженности, определяемый путем вычитания единицы из суммы отношений квадратов частот каждой клетки корреляционной таблицы к произведению частот соответствующего столбца и строки:
К1 и К2 – число групп по каждому из признаков. Величина коэффициента взаимной сопряженности, отражающая тесноту связи между качественными признаками, колеблется в обычных для этих показателей пределах от 0 до 1.
43. Непараметрические методы: коэффициент Фехнера.
Коэффициент корреляции знаков, или коэффициент Фехнера, основан на оценке степени согласованности направлений отклонений индивидуальных значений факторного и результативного признаков от соответствующих средних. Вычисляется он следующим образом:
где na - число совпадений знаков отклонений индивидуальных величин от средней; nb - число несовпадений.
Коэффициент Фехнера может принимать значения от -1 до +1. Kф = 1 свидетельствует о возможном наличии прямой связи, Kф =-1 свидетельствует о возможном наличии обратной связи.
44. Непараметрические
методы: коэффициент ранговой
Коэффициент ранговой корреляции Спирмена - это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.
Практический расчет коэффициента ранговой корреляции Спирмена включает следующие этапы:
1) Сопоставать каждому из признаков их порядковый номер (ранг) по возрастанию (или убыванию).
2) Определить разности
рангов каждой пары
3) Возвести в квадрат каждую разность и суммировать полученные результаты.
4) Вычислить коэффициент корреляции рангов по формуле:.
где - сумма квадратов разностей рангов, а - число парных наблюдений.
При использовании коэффициента ранговой корреляции условно оценивают тесноту связи между признаками, считая значения коэффициента равные 0,3 и менее, показателями слабой тесноты связи; значения более 0,4, но менее 0,7 - показателями умеренной тесноты связи, а значения 0,7 и более - показателями высокой тесноты связи.
Мощность коэффициента ранговой корреляции Спирмена несколько уступает мощности пар аметрического коэффициента корреляции