Дефектоскопия строительных конструкций

Автор работы: Пользователь скрыл имя, 17 Января 2013 в 09:46, реферат

Краткое описание

Трещины отделочные возникают и поверхностном слое металла, наклепанном при отделочных операциях. Поверхностные микротрещииы в дальнейшем, при работе детали под нагрузкой, могут значительно увеличиться.
Прижоги, трещины шлифовочиые возникают при резком нагреве поверхностного слоя стального изделия при нарушении режима шлифования или полирования. Дефекты представляют собой или закаленные участки небольшой площади, или участки с сеткой тонких трещин на поверхности детали.

Содержание

Производственно-техннологические дефекты 3
1.1 Дефекты механической обработки 3
1.2 Дефекты соединения металлов 3
2. Эксплуатационные дефекты 5
3. Методы неразрушающего контроля 5
Методы контроля проникающими веществами 5
3.2 Магнитные методы 6
4. Основные факторы, определяющие выбор метода контроля 6
4.1 Материал детали 7
4.2 Конструкция (форма и размеры) изделий 7
4.3 Состояние поверхности детали 8
4.4 Характеристика дефектов (вид и размер дефекта, место его расположения) 8
4.5 Условия работы детали 9
4.6 Условия контроля 9
4.7 Технико-экономические показатели 10
4.8 Эффективность контроля 11
5. Сравнение методов дефектоскопии 11
6. Капиллярные методы дефектоскопии 13
6.1 Подготовка изделий к контролю 14
6.2 Нанесение пенетранта 15
6.3 Удаление пенетранта с поверхности изделия 16
6.4 Нанесение проявителя 16
6.5 Проявление дефектов 17
6.6 Обнаружение дефектов и удаление проявителя 18
6.7 Удаление проявителя 19
7. Магнитная дефектоскопия 20
7.1 Нанесение магнитных порошков 21
7.2 Обработка поверхности 22
7.3 Магнитные порошки. Их свойства. 22
7.4 Осмотр детали. Выявление дефекта. 23
7.5 Магнитоносители 24
7.6 Индукционные преобразователи 24
7.7 Феррозонды 25
Список использованной литературы 26

Вложенные файлы: 1 файл

обследование.docx

— 66.20 Кб (Скачать файл)

 
    Как видно, выбор методов  и технических средств контроля  представляет собой сложную техническую  задачу. Однако решение ее еще  не обеспечивает эффективности-НК. Высокая эффективность контроля  может быть обес-печена при условии правильного выбора методик и инструкций контроля, технических средств (дефектоскопов и дефектоскопических материалов); исправности дефектоскопической аппаратуры и качества применяемых материалов; достаточной квалификации контролеров дефектоскопистов; правильной организации работ.

Следует отметить, что эффективность  НК существенно зависит от лица, проводящего контроль, его эрудиции, практических навыков, личных качеств.

 
 5. Сравнение методов  дефектоскопии.

 
    Для проверки детали на  отсутствие любых дефектов потребовалось  бы использование многих методов  дефектоскопии. Трудоемкость контроля  при этом превысила бы во  много раз трудоемкость изготовления  детали. Поэтому перед тем как  приступить к разработке методики  дефектоскопии, следует тщательно  изучить технологию изготовления  детали и определить, какие в  ней могут возникнуть несплошности. Для этой работы следует привлекать технологов и конструкторов.

В период отладки дефектоскопии  необходимо подвергать часть деталей  исследованию с разрушением, чтобы  убедиться в правильности контроля. Такому исследованию следует подвергать как забракованные, так и годные детали. Можно разрезать детали, забракованные по механической обработке.

Капиллярные и магнитные  методы служат для обнаружения поверхностных несплошностей. В отличие от магнитных, капиллярными методами можно контролировать детали из любых материалов, если несплошности не заполнены инородным твердым веществом. Выбор одного из этих методов для контроля поверхностных дефектов в ферромагнитных материалах определяется главным образом массовостью выпуска деталей. Если объем контроля столь невелик, что им занято не более одного-двух человек, то в большинстве случаев применение капиллярных методов целесообразно, так как эти методы наиболее универсальны. При большом объеме контроля значительными преимуществами обладает магнитный метод дефектоскопии, как более простой и менее трудоемкий. Магнитным методом можно также контролировать несплошности, находящиеся вблизи поверхности (на глубине нескольких миллиметров).

Если методы контроля поверхностных  дефектов в основном удовлетворяют  требованиям производства, то методы контроля внутренних несплошностей значительно отстают от потребностей промышленности.

Для выявления внутренних несплошностей применяют методы просвечивания и прозвучивания ультразвуком. Принципиально эти методы могут быть использованы и для выявления поверхностных дефектов, однако применение просвечивания для обнаружения поверхностных дефектов в большинстве случаев нецелесообразно из-за большей трудоемкости. Ультразвуковые методы применяют только в тех случаях, когда доступ к контролируемой поверхности затруднен.

Трещины, возникающие в  процессе эксплуатации. обычно выходят на поверхность и поэтому могут быть выявлены магнитными или капиллярными методами. Однако для такого контроля часто приходится разбирать машину. В этих случаях целесообразно применять ультразвук. Между ультразвуковым эхо-методом и рентгенографией много общего. Оба они требуют высокой квалифи кации дефектоскописта, который для решения вопроса о годности той или иной детали должен обладать опытом, выработанным при контроле аналогичных деталей.

Метод просвечивания наиболее чувствителен к пустотам, ориентированным  перпендикулярно поверхности контролируемой детали (параллельно направлению  лучей). С помощью ультразвука  легче выявляются пустоты, вытянутые  параллельно поверхности детали (чувствительность метода во многих случаях  мало изменяется с изменением толщины  детали). При просвечивании может  быть определен размер проекции дефекта  на рентгеновскую пленку и даже природа  несплошности (по ее конфигурации), однако определение глубины залегания и толщины несплошности вдоль направления просвечивания вызывает затруднения. При помощи ультразвука легко установить местоположение несплошности, но значительно сложнее определить ее размеры. Определить характер такой несплошности и ее размер по направлению хода луча почти нерозможно.

Для просвечивания необходимо, чтобы были доступны обе поверхности, а для прозвучивания достаточно одной. При помощи ультразвука можно выявить в стальных деталях толщиной более метра такие опасные дефекты, как трещины, в то время как рентгено-графированием выявление мелких флокенов и трещин возможно лишь при толщине стенки не более 10—15 мм Контроль просвечиванием требует принятия значительных мер безопасности, в то время как работа на ультразвуковых дефектоскопах совершенно безопасна.

В процессе прокатки и ковки  пустоты и засоры в металле  вытягиваются, располагаясь параллельно  плоскости деформации. При этом величина раскрытия дефектов значительно  уменьшается и в большинстве  случаев не превышает десятой  доли миллиметра. Это в большой  степени затрудняет просвечивание  деформированного металла. Более распространено просвечивание литых деталей, имеется  возможность обнаружить усадочные  раковины и засоры в деталях толщиной до нескольких сот миллиметров; из-за крупнозернистой структуры и  плохого качества поверхности применение ультразвука в этом случае затруднено.

Для контроля сварных соединений применяют магнитные и капиллярные  методы, методы просвечивания и ультразвуковую дефектоскопию. Наибольшее распространение  для контроля ответственных сварных  конструкций получила рентгенография. Чувствительность этого метода, определяемая по эталонам чувствительности с канавками, находится в пределах 1—6%. Такая  чувствительность обеспечивает достаточно надежное выявление газовых пор, неметаллических включений и  не-проваров при толщине шва до 20—30 мм.

С помощью рентгенографии можно выявить только те трещины, которые имеют размеры в пределах чувствительности метода, и их направление  составляет небольшой угол с направлением лучей. Например, поперечная тонкая трещина  в шве, наполовину его глубины  и более, не выявится, если угол между  ее плоскостью и осью луча будет  более 40°.

Стыковые сварные соединения условно можно разбить на три  диапазона: толщиной до 10 мм, от 10 до 30—50 мм и свыше 30—50 мм. Контроль соединений толщиной до 10 мм ультразвуком затруднен. При таких толщинах значительными  преимуществами обладают рентгенография и гаммаграфия с использованием источников с мягким излучением. При этом удается выявить почти все дефекты сварного соединения. Просвечивать сварные соединения толщиной' свыше 30—50 мм целесообразно лишь в тех случаях, когда они не могут быть проконтролированы ультразвуком. В большинстве случаев такие толщины целесообразнее контролировать ультразвуком. Сварные соединения толщиной от 10 до 30—50 мм в большинстве случаев оказывается целесообразным контролировать ультразвуком, дублируя просвечиванием контроль мест с несплошностями, допустимость которых вызывает сомнение. Причем, если при просвечивании несплошность не выявлена, наиболее вероятно, что в детали имеется трещина. Чем меньше размер недопустимых несплошностей, тем целесообразнее применение ультразвука.

 
6. Капиллярные  методы дефектоскопии.

 
    Капиллярные методы получили  большое распространение. Герметичность  сварных или клепаных соединений  издавна проверяют при помощи  керосина. Одну сторону сварного  шва, более доступную для осмотра,  окрашивают меловым раствором  с последующей просушкой. Затем  противоположную сторону шва  обильно смачивают керосином.  Так как керосин обладает способностью  проникать в мельчайшие поры  металла, то при наличии даже  незначительной неплотности на стороне шва, окрашенной мелом, обнаруживаются пятна керосина.

Капиллярный метод применяется  также для обнаружения несквозных несплошностей: трещин, микропористости и т. д. Если деталь с такой несплошностью погрузить в жидкость-проникатель или нанести ее на деталь кистью, то благодаря капиллярным силам жидкость проникнет в трещину (фиг. 15, а).

Затем жидкость удаляют струёй воды (фиг. 15,6, в). Деталь сушат. Таким образом, проникатель удаляют с поверхности детали, и он остается лишь в трещинах.

На сухую деталь наносят  специальный порошок-проявитель (фиг. 15, г). Он действует как промокательная бумага, вытягивая проникатель из трещины и образуя над ней полосу, значительно более широкую, чем раскрытие трещины (фиг. 15, д).

Чтобы улучшить видимое изображение  дефекта в проникателе растворяют яркий красителель. Такой метод получил название цветной дефектоскопии. После нанесения суспензии деталь просушивают. На ней образуется плотно прилегающий к поверхности детали рыхлый слой проявителя, хорошо впитывающего (абсорбирующего) проникатель из несплошностей. Несколько менее трудоемок люминесцентный метод контроля. При контроле этим методом в проникателе растворяют не краситель, а люминесцирующее вещество. Такое вещество светится, если его облучать, например, ультрафиолетовым светом.

Деталь выдерживают несколько  минут, после чего . стряхивают с нее проявитель. За это время проявитель впитывает (абсорбирует) проникатель из трещин и налипает возле них. Обработанную таким образом деталь освещают ультрафиолетовым светом и осматривают. Так как наш глаз не воспринимает отраженного от детали ультрафиолетового света, ее поверхность выглядит темной. На темной поверхности ярко светится голубовато-синим светом проникатель, выступивший в местах несплошностей (фиг. 16).

Капиллярными методами могут  быть выявлены дефекты на любых непористых материалах: алюминии, магнии, пластмассе и т. д. (если они не заполнены каким-либо веществом). Могут быть выявлены трещины  шириной от 0,05 до 0,01 мм и глубиной от 0,2 до 0,03 мм, пористость, микрорыхлоты в магниевых отливках и т. д. Чувствительность зависит от применяемых проникателей, проявителей и методики проведения контроля.

Существует много различных  вариантов капиллярной дефектоскопии, однако все они содержат следующие  основные этапы:

1 подготовка объектов  к контролю;

2 обработка объекта дефектоскопическими  материалами;

3 проявление дефектов;

4 обнаружение дефектов  и расшифровка результатов контроля;

5 окончательная очистка  объекта.

Технологические режимы операций контроля (продолжительность, температуру, давление, интенсивность внешних  физических воздействий) устанавливают  в зависимости от требуемого класса чувствительности, используемого набора дефектоскопических материалов, особенностей объекта контроля и типа искомых  дефектов, условий контроля и применяемой  аппаратуры.

 
6.1 Подготовка  изделий к контролю

 
    Подготовка объектов к контролю  включает очистку контролируемой  поверхности и полостей дефектов  от всевозможных загрязнении,  лакокрасочных покрытии, моющих  составов и дефектоскопических материалов, оставшихся от предыдущего контроля, а также сушку контролируемой поверхности и полостей дефектов.

Рассмотрим способы очистки  контролируемой поверхности.

1. Механическая - Очистка поверхности объекта контроля струёй песка, дроби, косточковой крошки, другими диспергированными абразивными материалами или резанием, в том числе обработка поверхности шлифованием, полированием, шабровкой.

2. Паровая - Очистка в парах органических растворителей

3. Растворяющая - Очистка воздействием на объект контроля удаляющих загрязнения водяных или органических растворителей, в том числе посредством струйной промывки, погружения и протирки.

4. Химическая - Очистка воздействием на объект контроля удаляющих загрязнения водяных или органических растворителей, в том числе посредством струйной промывки, погружения и протирки

5. Электрохимическая - Очистка водными растворами химических реагентов с одновременным воздействием электрического тока

6. Ультразвуковая - Очистка органическими растворителями, водой или водными растворами химических соединений в ультразвуковом поле с использованием режима ультразвукового капиллярного эффекта (увеличение глубины и скорости проникновения жидкости в капиллярные полости под действием ультразвука).

7. Анодно-ультразвуковая - Очистка водными растворами химических реагентов с одновременным воздействием ультразвука и электрического тока

8. Тепловая - Очистка прогревом при температуре, не вызывающей недопустимых изменений материала объекта

9. Сорбционная - Очистка смесью сорбента и быстросохнущего органического растворителя, наносимой на очищаемую поверхность, выдерживаемой и удаляемой после высыхания

 
6.2 Нанесение пенетранта

 
В настоящее время известно несколько  способов заполнения полостей дефектов индикаторными пенетрантами.

1. Капилярное - Самопроизвольное заполнение полостей несплошностей индикаторным пенетрантом, наносимым на контролируемую поверхность смачиванием, погружением, струйно, распылением с помощью сжатого воздуха, хладона или инертного газа

2. Вакуумное - Заполнение полостей несплошностей индикаторным пенетрантом при давлении в их полостях менее атмосферного

Информация о работе Дефектоскопия строительных конструкций