Автор работы: Пользователь скрыл имя, 17 Марта 2014 в 12:34, реферат
При существующем уровне научно-технического прогресса энергопотребление может быть покрыто лишь за счет использования органического топлива (уголь, нефть, газ), гидроэнергии и атомной энергии на основе тепловых нейтронов. Однако, по результатам многочисленных исследований органическое топливо к 2020 г. может удовлетворить запросы мировой энергетики только частично. Остальная часть энергопотребности может быть удовлетворена за счет других источников энергии - нетрадиционных и возобновляемых.
Возобновляемые источники энергии - это источники на основе постоянно существующих или периодически возникающих в окружающей среде потоков энергии. Возобновляемая энергия не является следствием целенаправленной деятельности человека, и это является ее отличительным признаком.
В России до недавнего времени развитию ветроэнергетики не уделялось должного внимания. Разрабатывавшиеся в конце прошлого века ВЭУ мощностью в 250 кВт не были доведены до необходимых требований по надежности и эффективности. Аналогичной оказалась судьба разработки ОКБ "Радуга" ВЭУ мощностью в 1 МВт. Поэтому практически все крупные ВЭУ, действующие сегодня в России, укомплектованы импортными агрегатами (Табл.3).
Таблица 3.
В отличие от производства крупных ВЭУ, в России имеется довольна развитая производственная база по выпуску автономных ветроустановок малой мощности: от 0,04 до 16 кВт, в том числе ветро-дизельные агрегаты. Около 10 изготовителей готовы выпускать такие ВЭУ, а некоторые из них (ЦНИИ "Электроприбор" г. Санкт-Петербург) поставляют свои изделия заграницу. В России потенциальный рынок для таких установок велик, однако, расширение выпуска не происходит из-за малого платежеспособного спроса. Для более широких поставок заграницу, прежде всего в развивающиеся страны, необходима сертификация установок по международным стандартам и наладка гарантийного и сервисного обслуживания.
Малая гидроэнергетика.
К малым ГЭС условно относят гидроэнергетические агрегаты мощностью от 100 кВт до 10 МВт. Меньшие агрегаты относятся к категории микро-ГЭС. Суммарная мощность малых ГЭС в мире сегодня превышает 70 ГВт.
Малая гидроэнергетика за последние десятилетия заняла устойчивое положение в электроэнергетике многих стран мира. В ряде развитых стран установленная мощность малых ГЭС превышает 1 млн. кВт (США, Канада, Швеция, Испания, Франция, Италия). Они используются как местные экологически чистые источники энергии, работа которых приводит к экономии традиционных топлив, уменьшая эмиссию диоксида углерода. Лидирующая роль в развитии малой гидроэнергетики принадлежит КНР, где суммарная установленная мощность малых ГЭС превышает 13 млн. кВт. В развивающихся странах создание малых ГЭС как автономных источников электроэнергии в сельской местности имеет огромное социальное значение. При сравнительно низкой стоимости установленного киловатта и коротком инвестиционном цикле малые ГЭС позволяют дать электроэнергию удаленным от сетей поселениям.
В России энергетический потенциал малых рек очень велик. Число малых рек превышает 2,5 млн., их суммарный сток превышает 1000 км3 в год. По оценкам специалистов сегодняшними доступными средствами на малых ГЭС в России можно производить около 500 млрд. кВтч электроэнергии в год.
В середине прошлого века в России работало большое количество малых ГЭС, однако, впоследствии предпочтение было отдано крупному гидроэнергостроительству, и малые ГЭС постепенно выводились из эксплуатации. Сегодня интерес к малым ГЭС возобновился. Несмотря на то, что их экономические характеристики уступают крупным ГЭС, в их пользу работают следующие аргументы. Малая ГЭС может быть сооружена даже при нынешнем дефиците капиталовложений за счет средств частного сектора экономики, фермерских хозяйств и небольших предприятий. Малая ГЭС, как правило, не требует сложных гидротехнических сооружений, в частности, больших водохранилищ, которые на равнинных реках приводят к большим площадям затоплений. Сегодняшние разработки малых ГЭС характеризуются полной автоматизацией, высокой надежностью и полным ресурсом не менее 40 лет. Малые ГЭС позволяют лучше использовать солнечную и ветровую энергию, так как водохранилища ГЭС способны компенсировать их непостоянство.
В 90-е годы в России проблема производства оборудования для малых и микро-ГЭС в основном была решена. Особенно привлекательно создание малых ГЭС на базе ранее существовавших, где сохранились гидротехнические сооружения. Сегодня их можно реконструировать и технически перевооружить. Целесообразно использовать в энергетических целях существующие малые водохранилища, которых в России более 1000.
В стране имеется ряд предприятий, производящих и продающих гидроэнергетическое оборудование, отвечающее самым современным требованиям и не уступающее лучшим мировым образцам. С использованием этого оборудования малые ГЭС могут создаваться как полностью автономные, так и работать на сеть. Последнее требует разработки законодательства, регламентирующего взаимоотношения между индивидуальными производителями электроэнергии и сетью.
Солнечная энергия.
Наиболее просто использовать солнечную энергию для получения тепла для горячего водоснабжения. Солнечные водонагревательные установки (СВУ) широко распространены в странах с жарким климатом. Например, в Израиле закон требует, чтобы каждый дом был оснащен СВУ. В США СВУ повсеместно используются для подогрева воды в бассейнах. Вклад СВУ в энергетический баланс США эквивалентен примерно 2 млн. тут в год. Основным элементом СВУ является плоский солнечный коллектор, воспринимающий солнечную радиацию и преобразующий ее в полезное тепло. Поэтому обычно масштаб использования СВУ оценивают площадью установленных солнечных коллекторов. Суммарная площадь коллекторов, установленных сегодня в мире оценивается в 50-60 млн м2, что обеспечивает получение тепловой энергии, эквивалентной 5-7 млн тут в год. В Европейских странах к концу 2000 г. действовало 11,7 млн м2 коллекторов.
В России СВУ на сегодня не нашли сколько-нибудь значительного распространения, что с одной стороны связано с относительно низкой стоимостью традиционных топлив, а с другой - бытующим мнением о недостаточной инсоляции в большинстве регионов России.
Вместе с тем в последние годы для всей территории России проведено тщательное исследование прихода солнечной энергии на поверхности, тем или иным образом ориентированные в пространстве, и показано, что практически для всех регионов страны, включая высокие широты, применение СВУ в течение 3-6 месяцев в году экономически оправдано.
В эти же годы рядом промышленных предприятий разработаны новые типы солнечных коллекторов, применение которых в СВУ вместо импортных, делает эти установки экономически более привлекательными. В связи с этим интерес к использованию СВУ в стране, особенно в южных регионах, возрос (Ростовская область, Ставропольский и Краснодарский края, Дагестан, Калмыкия, Бурятия). Хотя в летнее время даже в Сибири достаточно солнца, чтобы использовать СВУ. Представляет также интерес использование солнечных коллекторов в сочетании с тепловыми насосами (ТН) в том числе для отопления.
Для преобразования солнечной энергии в электроэнергию могут быть использованы как термодинамические методы, так и прямое преобразование с помощью фотоэлектрических преобразователей (ФЭП).
Сегодня в США работают 7 электростанций общей мощностью 354 МВт (э), использующие параболоцилиндрические концентраторы солнечной радиации и термодинамический метод преобразования. Известны проекты сооружения подобных СЭС в ряде стран так называемого солнечного пояса (Мексика, Египет и др.). Для России, с учетом характеристик солнечной радиации, подобные СЭС сегодня не представляют сколько-нибудь значительного интереса.
Фотоэлектрические преобразователи, напротив, находят все большее применение в самых разных регионах. В отличие от СЭС с концентраторами, ФЭП используют не только прямое, но и рассеянное излучение и не требуют дорогостоящих устройств для слежения за солнцем.
Рынок ФЭП развивается весьма динамично. Суммарная мощность установленных в мире ФЭП в 2002 году, превысила 500 МВт. Это обусловлено принятием в ряде стран национальных программ, предусматривающих широкое внедрение ФЭП ("100 тысяч солнечных крыш" в Германии, "100 тысяч солнечных крыш" в Японии, "1 млн. солнечных крыш" в США). Быстрыми темпами растет и производство ФЭП, достигшее 1 ГВт в год. Япония и Германия прогнозируют в ближайшие годы выход на годовые объемы производства до 500 МВт каждая. Массовое производство ФЭП ведет к их удешевлению. Сегодня модули ФЭП на мировом рынке стоят около 4 долл. за пиковый ватт, что при удовлетворительной инсоляции приводит к стоимости электроэнергии в 15-20 цент/кВтч. Особенно велик рынок ФЭП в развивающихся странах. Установки сравнительно небольшой мощности в единицы кВт представляют сегодня практически единственную возможность приобщить сельское население этих стран к современной цивилизации.
Сегодня на мировом рынке присутствуют тысячи фирм, создающих различные установки с ФЭП, но только десятки фирм, в том числе в России умеют делать солнечные элементы. Начиная с середины 90х годов, в России инициированы работы по совершенствованию ФЭП и развертывание их опытно-промышленного производства. Была разработана технология изготовления ФЭП и внедрена в производство на фирме "Солнечный Ветер" (г. Краснодар) и ОКБ "Красное знамя" (г. Рязань). Это позволило выйти на мировой рынок и увеличить поставки ФЭП за рубеж. Так, например, фирма "Солнечный Ветер" поставляет свою продукцию в более чем 10 стран. За 1996-2001гг объем продаж увеличился в десять раз (с 60 до 600 кВт/год), а в 2002 году превысил 1 МВт.
Однако, несмотря на положительные тенденции мирового рынка, высокая стоимость, электроэнергии от ФЭП сдерживает их более широкое применение. Эта высокая стоимость обусловлена как дороговизной основного материала (как правило, кремния высокой чистоты), так и дороговизной технологического процесса. Поэтому в мире и в России ведутся интенсивные исследования и разработки, направленные на удешевление ФЭП. Одним из перспективных направлений является создание высокоэффективных ФЭП с концентраторами солнечного излучения. Наиболее интенсивно исследования в этой области проводятся в США и России. КПД разработанных в США солнечных элементов (СЭ) на основе монокристаллического кремния достигает 20-25% при концентрации в 10-100 солнц и рабочей температуре 25оС. При большей концентрации эти СЭ требуют принудительного охлаждения, ибо их кпд существенно снижается с ростом температуры (на 1/3 при повышении температуры на 100оС). Для работы при концентрации в 300-1000 солнц более перспективны СЭ на основе системы арсенид галлия - арсенид алюминия, впервые разработанной в ФТИ им. А.Ф. Иоффе. Значения КПД каскадных СЭ на основе GaAs, достигнутые в США и России (ФТИ им. А.Ф. Иоффе), составляют около 30% при концентрации в 500-1000 солнц и при реальных рабочих температурах 60-80оС. Поэтому, несмотря на более высокую стоимость арсенида галлия, цены на энергоустановки с концентрацией по оценкам окажутся приблизительно в 2 раза ниже плоских кремниевых.
Энергия биомассы.
Вклад биомассы в мировой энергетический баланс составляет около 12%, хотя значительная доля биомассы, используемой для энергетических нужд, не является коммерческим продуктом и, как результат, не учитывается официальной статистикой. В странах Европейского Союза, в среднем, вклад биомассы в энергетический баланс составляет около 3%, но с широкими вариациями: в Австрии - 12%, в Швеции - 18%, в Финляндии - 23%.
Первичной биомассой являются растения, произрастающие на суше и в воде. Биомасса образуется в результате фотосинтеза, за счет которого солнечная энергия аккумулируется в растущей массе растений. Энергетический кпд собственно фотосинтеза составляет около 5%. В зависимости от рода растений и климатической зоны произрастания это приводит к различной продуктивности в расчете на единицу площади, занятой растениями. Для северных зрелых, медленно растущих лесов продуктивность составляет 1 т прироста древесины в год на 1 га. Для сравнения урожай кукурузы (вся зеленая масса) в штате Айова, США в 1999 г. составил около 50 т/га.
Для энергетических целей первичная биомасса используется в основном как топливо, замещающее традиционное ископаемое топливо. Причем речь, как правило, идет об отходах лесной и деревоперерабатывающей промышленности, а также об отходах полеводства (солома, сено). Теплотворность сухой древесины достаточно высока, составляя в среднем 20 ГДж/т. Несколько ниже теплотворность соломы, например, для пшеничной соломы она составляет около 17,4 ГДж/т. В то же время большое значение имеет удельный объем топлива, который определяет размеры соответствующего оборудования и технологию сжигания. В этом отношении древесина значительно уступает, например, углю. Для угля удельный объем составляет около 30 дм3/ГДж, тогда как для щепы, в зависимости от породы дерева, этот показатель лежит в пределах 250 - 350 дм3/ГДж; для соломы удельный объем еще больше, достигая 1 м3/ГДж. Поэтому сжигание биомассы требует либо ее предварительной подготовки, либо специальных топочных устройств. В частности, в ряде стран распространение получил способ уплотнения древесных отходов с превращением их в брикеты или, так называемые, пелетки. Оба способа позволяют получить топливо с удельным объемом около 50 дм3/ГДж, что вполне приемлемо для обычного слоевого сжигания. Например, в США годовое производство пелеток составляет около 0,7 млн. т, а их рыночная цена - около 6 долл. /ГДж при теплотворности около 17 ГДж/т.
В России использование отходов лесной, деревообрабатывающей и целлюлозно-бумажной промышленности для коммерческого производства электроэнергии и тепла пока достаточно ограничено. По данным Госкомстата в 2001 г. в стране имелось 27 малых ТЭЦ с общей установленной мощностью 1,4 ГВт, использовавших биомассу совместно с традиционными топливами (мазут, уголь, газ). При этом собственно на биомассе выработано 2,2 млрд. кВтч электроэнергии и 9,7 млн. Гкал тепла из общей выработки 5,5 млрд. кВтч и 24 млн. Гкал (т.е. около 40% от общей выработки).
Наряду с первичной растительной биомассой значительный энергетический потенциал содержится в отходах животноводства, твердых бытовых отходах и отходах различных отраслей промышленности. Использование этого потенциала возможно термохимическими или биохимическими методами. В первом случае речь идет в основном о твердых бытовых отходах, которые либо сжигаются, либо газифицируются на мусороперерабатывающих фабриках. Во втором случае сырьем является навоз или жидкие бытовые стоки, которые перерабатываются в биогаз.
В России ежегодно образуется около 60 млн. т твердых бытовых отходов (ТБО); количество отходов животноводства и птицеводства составляет около 130 млн. т/год, а осадков сточных вод 10 млн. т/год. Энергетический потенциал этих отходов составляет 190 млн. т у. т. Этот потенциал используется пока совершенно недостаточно. Имеются единичные опытные установки по переработке ТБО, эксплуатационные характеристики которых нельзя признать удовлетворительными для широкого промышленного использования. В этом направлении предстоит еще большая работа.
Серьезные успехи были достигнуты в области переработки жидких городских стоков. Уже с 50-х годов прошлого века на Курьяновской и Люберецкой станциях г. Москвы производилась очистка городских стоков и работали мощные биогазогенераторы - метантенки. Этот радикальный метод переработки активного ила и осадков сточных вод был затем реализован на станциях очистки Новосибирска, Сочи и других городов России.
В основе биохимической переработки отходов животноводства и птицеводства лежит анаэробное сбраживание. В результате этого процесса органическая масса отходов определенными штаммами бактерий превращается в биогаз. Обычный состав биогаза: до 70% метана и 30% диоксида углерода.
В настоящее время в России разработкой, созданием, производством опытных серий оборудования, установок в целом, реализующих высокорентабельные биогазовые технологии, занимается ЗАО Центр "ЭкоРос". Этот Центр разработал и выпускает опытными сериями индивидуальные биогазовые установки ИБГУ-1 для хозяйств, имеющих до 5-6 голов крупного рогатого скота. За 10 лет Центр произвел и реализовал 86 комплектов ИБГУ-1: из них - 79 в России, 4 - в Казахстане, 3 - в Белоруссии. С 1997 года по документации ЗАО Центр "ЭкоРос" освоено производство таких установок в Китае в г. Ухань на совместном китайско-российском предприятии.
Геотермальная энергия.
Под геотермальной энергией понимают физическое тепло глубинных слоев земли, имеющих температуру, превышающую температуру воздуха на поверхности. Носителями этой энергии могут быть как жидкие флюиды (вода и/или пароводяная смесь), так и сухие горные породы, расположенные на соответствующей глубине. Из недр Земли на ее поверхность постоянно поступает тепловой поток, интенсивность которого в среднем по земной поверхности составляет около 0,03 Вт/м2. Под воздействием этого потока, в зависимости от свойств горных пород, возникает вертикальный градиент температуры - так называемая геотермальная ступень. В большинстве мест она составляет не более 2-3К/100м. Однако в местах молодого вулканизма, вблизи разломов земной коры геотермальная ступень повышается в несколько раз и уже на глубинах в несколько сот метров, а иногда нескольких километров, находятся либо сухие горные породы, нагретые до 100оС и более, либо запасы воды или пароводяной смеси с такими температурами.
Информация о работе Нетрадиционные возобновляемые источники энергии