Автор работы: Пользователь скрыл имя, 18 Декабря 2012 в 13:05, контрольная работа
1. Определение расчетного максимального расхода по данным многолетних гидрометрических наблюдений
2. Определение расчетного максимального расхода при недостаточности данных гидрометрических наблюдений.
Министерство образования Российской Федерации
Уральский государственный лесотехнический университет
Кафедра
сопротивления материалов и
Контрольная работа
по дисциплине «инженерная гидрология»
Определение расчетного паводкового расхода воды в реке
Выполнил:Студент
Специальность: 270205 (3,5г.)
Проверила:Душинина С.А.
Екатеринбург,2011
Определение расчетного максимального расхода воды при наличии данных гидрометрических наблюдений достаточной продолжительности
производится
путем применения (подбора) аналитических
функций распределения
Репрезентативность (т.е. показательность,
достаточность) ряда
Для расчета максимумов
В качестве основной
Параметры аналитических
Эмпирическая ежегодная
где m - порядковый номер членов ряда гидрологической характеристики, расположенного в убывающем порядке (ранжированный ряд);
n - общее число членов ряда.
Результаты расчета по формуле
(1) наносятся на клетчатку
В качестве основной расчетной
считается эмпирическая кривая
вероятностей, построенная по натурным
точкам. Если график аналитической
функции практически совпадает
с эмпирической кривой, то ею
можно пользоваться для
1.1.Расчет максимального стока воды рек весеннего половодья методом наибольшего правдоподобия
Статистическая обработка ряда
наблюдений производится в
- ежегодные максимумы расходов (Q) расставляют в убывающем порядке (ранжируют);
- вычисляют среднее многолетнее значение расхода ( ):
- вычисляют статистики и по формулам:
где - модульный коэффициент рассматриваемой гидрологической характеристики;
- по формуле (1) вычисляют ежегодные вероятности превышения максимальных расходов ( );
- по полученным значениям
- по соотношению CS/CV подбирают клетчатку вероятности (Приложение 2), на которой строится спрямленный график аналитической функции по значению CV и наносятся натурные точки эмпирической вероятности каждого года.
Если эмпирические точки
При выполнении расчетов
Для проверки арифметических действий следует обязательно предварительно определить сумму коэффициентов , которая должна равняться числу членов ряда, т.е. . Несовпадение этого условия говорит об ошибке в подсчете либо , либо частных значений .
Подставляя полученные в табл. 2 суммы значений, , и соответственно в формулы (2), (3) и (4), вычисляем , и :
По найденным значениям и подбираем номограмму таким образом, чтобы точка, соответствующая координатам и попала в поле линий номограммы. По этой точке находим значения параметров CV и CS.
Подходит номограмма для CV = 0, 35 - 0, 70, по которой снимаем значения CV = 0,49 и CS = 5CV. Затем на клетчатке вероятностей для CS = 5CV строим график аналитической функции трехпараметрического гамма-распределения в виде прямой, проведенной по линейке, наложенной по левой и правой шкалам при CV = 0,48. На эту же клетчатку наносим точки эмпирической ежегодной вероятности превышения максимальных расходов воды по значениям , и .
Как видно из графика,
По графику расчетные значения модульного коэффициента обеспеченностью 1, 2 и 3 % будут равны: , , .
Расчетные максимальные расходы воды по формуле (5) получаются равными:
Таблица 2
Определение параметров кривой обеспеченности максимальных расходов воды р. Ятрия
Номер n\n |
Годы |
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
1 |
1957 |
1097,6 |
2,802574 |
0,447557 |
1,254312 |
3,4 |
2 |
1950 |
635,04 |
1,621489 |
0,209914 |
0,340373 |
7,0 |
3 |
1948 |
604,8 |
1,544275 |
0,188725 |
0,291443 |
10,3 |
4 |
1969 |
539,84 |
1,378409 |
0,139378 |
0,192120 |
13,3 |
5 |
1956 |
526,4 |
1,344092 |
0,128429 |
0,172620 |
17,2 |
6 |
1967 |
518,56 |
1,324073 |
0,121912 |
0,161420 |
20,7 |
7 |
1947 |
508,48 |
1,298335 |
0,113387 |
0,147214 |
24,1 |
8 |
1961 |
458,08 |
1,169646 |
0,068054 |
0,079599 |
27,6 |
9 |
1964 |
444,64 |
1,135328 |
0,055121 |
0,062581 |
31,0 |
10 |
1955 |
425,6 |
1,086712 |
0,036115 |
0,039246 |
34,5 |
11 |
1965 |
425,6 |
1,086712 |
0,036115 |
0,039246 |
37,9 |
12 |
1943 |
404,32 |
1,032377 |
0,013838 |
0,014286 |
41,4 |
13 |
1958 |
383,04 |
0,978041 |
-0,009643 |
-0,009431 |
44,8 |
14 |
1960 |
379,68 |
0,969462 |
-0,013469 |
-0,013058 |
48,3 |
15 |
1968 |
360,64 |
0,920846 |
-0,035813 |
-0,032978 |
51,7 |
16 |
1946 |
358,4 |
0,915126 |
-0,038519 |
-0,035250 |
55,2 |
17 |
1942 |
331,52 |
0,846492 |
-0,072377 |
-0,061267 |
58,6 |
18 |
1952 |
290,08 |
0,740680 |
-0,130369 |
-0,096562 |
62,1 |
19 |
1951 |
264,32 |
0,674906 |
-0,170757 |
-0,115245 |
65,5 |
20 |
1962 |
246,4 |
0,629149 |
-0,201246 |
-0,126614 |
69,0 |
21 |
1963 |
246,4 |
0,629149 |
-0,201246 |
-0,126614 |
72,4 |
22 |
1944 |
239,68 |
0,611991 |
-0,213255 |
-0,130510 |
75,9 |
23 |
1945 |
237,44 |
0,606271 |
-0,217333 |
-0,131763 |
79,3 |
24 |
1953 |
232,96 |
0,594832 |
-0,225606 |
-0,134197 |
82,8 |
25 |
1949 |
224 |
0,571954 |
-0,242639 |
-0,138778 |
85,2 |
26 |
1966 |
212,8 |
0,543356 |
-0,264915 |
-0,143943 |
89,7 |
27 |
1959 |
203,84 |
0,520478 |
-0,283598 |
-0,147606 |
93,1 |
28 |
1954 |
165,76 |
0,423246 |
-0,373407 |
-0,158043 |
96,6 |
11004,92 |
28,000000 |
-1,135650 |
1,192601 |
1.2. Учет влияния выдающихся величин речного стока на расчетные гидрологические характеристики.
Критерием надежности расчетов с применением аналитических кривых вероятностей должно быть требование о том, чтобы вычисленная величина расхода воды расчетной ВП была не менее максимальной, наблюдавшейся за рассматриваемый период времени. Это требование важно для непродолжительных рядов наблюдений при наличии одного или двух выдающихся максимумов. Учет выдающихся максимумов обязателен при анализе максимального стока для проектирования мостового сооружения.
Параметры кривых распределения гидрологических характеристик при наличии обоснованных сведений о выдающихся величинах речного стока следует определять по специальным формулам, приведенным в СНиП 2.01.14-83, в которые входят величины выдающегося расхода , и число лет , в течение которых выдающееся значение расхода не было превышено.
Использование формул допускается лишь в том случае, когда исторические сведения о выдающемся гидрологическом значении и числе лет его непревышения достаточно обоснованы архивным материалом или получены в результате опроса местных жителей. Произвольное задание и недопустимо.
В расчетно-графической работе
в связи с отсутствием
при
где - параметр, учитывающий длину ряда наблюдений;
m - номер члена в ранжированном ряду;
n - число членов ряда.
Вероятность остальных членов ряда определяться по формуле (1).
2. Определение
расчетного максимального
При определении расчетных гидрометрических характеристик, в частности, расчетного максимального паводкового расхода при наличии короткого ряда наблюдений, необходимо привести их к многолетнему периоду по данным реки-аналога с более длительным рядом наблюдений.
При выборе реки-аналога необходимо учесть следующие условия:
- возможную
географическую близость
- сходство климатических условий;
- однородность
условий формирования стока,
Информация о работе Определение расчетного паводкового расхода воды в реке - инженерная гидрология