Основоположники промышленной системотехники Уникальный "Импульс"

Автор работы: Пользователь скрыл имя, 29 Сентября 2013 в 11:26, реферат

Краткое описание

В послевоенные годы в Советском Союзе важнейшие научно-технические проблемы - овладение атомной энергией, развитие ракетостроения, космонавтики и др. - решались путем создания мощных научно-производственных центров. Так, в Северодонецке (Украина) в 1956 г. был создан филиал Московского СКБ-245 - ведущей организации по вычислительной технике.
Решающим фактором, определившим развитие работ в создании управляющей вычислительной техники было наличие сложного объекта автоматизации - огромного химического комплекса - Лисичанского химкомбината, изучение которого позволило понять в полном объеме задачи компьютерной автоматизации технологических процессов. Быстро определился ряд талантливых разработчиков, положивших основу инженерной школы в области проектирования и производства вычислительной техники для управления технологическими процессами.

Вложенные файлы: 1 файл

61316.docx

— 45.71 Кб (Скачать файл)

На каждом цикле обработки информации определялось, каким этапом пуска (остановки) необходимо управлять, затем управление передавалось определенной части формирующей  программы, где указывались действия и адреса операндов. После этого  "Автооператор" выполнял сформированную программу.

Метод операторного программирования позволил значительно сократить  длину программы управления и  обеспечивал простой переход  к составлению программ для управления другими процессами.

Испытания "Автооператора" производились на одной колонне, оснащенной необходимыми датчиками и исполнительными механизмами. Была обеспечена работа нескольких контуров регулирования, пуск и остановка колонны.

Испытания показали, что система  управления с вычислительным комплексом в качестве центрального регулятора обеспечивает необходимое качество регулирования основных параметров процесса и успешно справляется  с задачей пуска и остановки  колонны концентрирования. Однако, регулярной эксплуатации мешали недостаточно надежные исполнительные механизмы. Почти половина всех неисправностей приходилась на их долю. В дальнейшем в течение длительного времени "Автооператор" использовался для проведения исследовательских и опытных работ на колонне.

Первый успех

Еще до завершения работ над "Автодиспетчером" в филиале начали разработку трехуровневой многомашинной системы для оперативного управления процессами в промышленности СОУ-1, претендующей на широкое внедрение и рассчитанной на серийное производство. Структура и архитектура системы опережали свое время. Они были определены на основе анализа задач по управлению таким сложным территориально рассредоточенным крупнотоннажным производством, как производство аммиака. Упомянутые выше три уровня управления требовали создания многомашинного комплекса. В состав системы вошли три машины. Машина первичной переработки информации (МППИ) предназначалась для сбора, нормализации и первичной переработки информации, выдачи и регистрации мгновенных и расчетных значений параметров управляемого процесса, а также тенденций их изменения местному оперативному персоналу. По существу это был в современной терминологии промышленный контроллер.

Для второго уровня управления предназначалась  управляющая машина УМ-1.

В ее состав входили модульные устройства связи с объектом УСО, ориентированные  на прием и выдачу стандартных  сигналов Государственной системы  приборов. Машина воздействовала на объект через системы местной пневмоавтоматики и непосредственно на пневматические исполнительные механизмы, имея для  этого в составе УСО электропневматические  преобразователи. УСО машины УМ-1 могло принять до 352 аналоговых токовых сигналов модулями по 16; сигналов термопар и термосопротивлений до 256, модулями по 16 сигналов; сигналов от пневматических датчиков до 256; позиционных сигналов до 600; до 60 число-импульсных сигналов. По выходу УСО имели до 10 электрических токовых сигналов; до 128 аналоговых пневматических, до 400 позиционных электрических сигналов. Каждый пользователь мог подобрать требуемый состав устройств связи с объектом. Вычислительная часть машины УМ-1 была построена на феррит-диодных элементах, имела ферритовые модульные оперативные и постоянные запоминающие устройства (соответственно 1024 слова х 4 и 2048 слова х 3), выполняла 30 арифметических и логических операций над 21 разрядными двоичными числами с фиксированной запятой со скоростью 900 опер/сек. Отличительной особенностью машины было наличие системы прерывания, обеспечивающей выполнение 16 различных, не связанных между собой программ с автоматическим выбором наиболее важного и сложного запроса по заданному приоритету. Вероятно, это был первый практический промышленный пример мультипрограммной машины (в то время были опубликованы работы по разделению времени решения задач на машинах общего назначения). Благодаря этому свойству удалось создать программное обеспечение, выполняющее кроме функциональных задач еще и диалог оператора с машиной и оперативную тестово-диагностическую процедуру, включающую исправление ошибок и т.п. Мультипрограммный режим позволил включить в состав машины пульт оператора системы управления объектом, дав ему возможность контролировать и управлять процессом. Машина УМ-1 имела в своем составе все функциональные компоненты современных управляющих вычислительных систем. Она могла работать как в комплексе с машинами МППИ-1, так и самостоятельно.

Координирующая машина КВМ-1 системы СОУ-1 обладала по тому времени очень высокими техническими характеристиками. Она была задумана, как машина, взаимодействующая в реальном времени с 65-ю абонентами типа УМ-1 и МППИ-1 на расстоянии до 12 км, связанными с КВМ-1 радиальными каналами связи. Это был существенный шаг к созданию сетевой структуры вычислительных машин для управления сложными технологическими объектами, только тогда это так не называлось. КВМ-1 могла работать также с собственными устройствами связи с объектом при решении задач управления, требующих больших вычислительных мощностей.

Вычислительный комплекс КВМ-1 мог  выполнять 256 различных операций со скоростью 100 тыс.операций в секунду. Операции выполнялись как с фиксированной так и с плавающей запятой над 25 и 50 разрядными словами. Машина имела модульную оперативную память до 126976 слов модулями по 4096, долговременную память на магнитной ленте объемом 20 млн.слов. Система мультипрограммирования, реагировавшая на 80 асинхронных запросов, позволяла создавать операционную систему реального времени, включающую в себя мощные средства диагностики. Для КВМ-1 были разработаны трансляторы для нескольких подмножеств языка АЛГОЛ-60. Машина была оснащена пультом взаимодействия оператора с процессом в диалоговом режиме с двухцветной печатью текста диалога. Интересной особенностью КВМ-1 было то, что для нее был разработан специальный набор логических элементов на туннельных диодах и транзисторах, позволяющий получить высокую производительность машины.

Создание машины КВМ-1 совпало по времени с появлением в Институте кибернетики машины Днепр-2 и информации о системе IBM 360. Поэтому работы по КВМ-1 не получили должного развития. Но основной причиной остановки работ над КВМ-1 было то, что промышленные предприятия не были готовы к использованию мощных управляющих машин. Система СОУ-1 в целом опередила свое время. Северодонецким приборостроительным заводом было выпущено несколько сотен машин МППИ-1 и УМ-1, которые были использованы в системах управления различными объектами и успешно работали в течение двух десятилетий.

В это время на Северодонецком приборостроительном заводе начался промышленный выпуск средств системотехники для управления технологическими процессами. В отличие от вычислительных машин общего назначения, выпускаемых в то время, управляющие машины имели структурные и архитектурные особенности, повышающие надежность их работы, включали в себя обширный комплекс устройств связи с объектом, оператором и др., которые в то время никем не разрабатывались и не выпускались. Создатели СОУ-1 были вынуждены осуществить разработку электромеханических устройств ввода-вывода самостоятельно. Для машины УМ-1 были разработаны ленточный перфоратор ПЛ-80, двухцветное печатающее устройство на бесконечном бланке, считыватель с перфоленты СП-3 и др. Эти изделия были освоены промышленностью и стали жить самостоятельной жизнью. Перфораторы ПЛ-80 и ПЛ-150 оказались единственными в СССР устройствами вывода высокого класса и выпускались массово до начала 90-х годов.

Вынужденное решение

В середине 60-х годов перед разработчиками компьютерной техники в СССР возникла проблема выбора перспективной структуры  и архитектуры средств обработки  информации третьего поколения. Именно в это время в Советском  Союзе было принято решение, лишившее собственного пути развития отечественную  вычислительную технику - в качестве основы для разработки в странах  Совета экономической взаимопомощи (СЭВ) единой системы электронных  вычислительных машин ЕС ЭВМ была принята структура и архитектура  системы IBM 360. Это волевое решение, не учитывающее мнение специалистов, привело к огромным неоправданным  затратам и созданию серии вычислительных машин (ЕС ЭВМ), которые устарели, не выработав своего ресурса. Использование  структуры и архитектуры системы IBM 360 в управляющей технике, превращало ее в обычную вычислительную технику, что доказали дальнейшие события.

НИИ УВМ приступил к разработке комплекса технических средств третьего поколения, аналогичного по структуре СОУ-1, применив в процессорах базовую систему инструкций и интерфейсы периферийных устройств системы IBM 360. Разработчики понимали, что на тот момент они не могут рассчитывать на отечественную микроэлектронику, поэтому разработка делилась на две очереди. Первая реализовалась на технологической базе вычислительных систем второго поколения и включала три модели вычислительных комплексов - М1000, М2000 и М3000. При этом модель М1000 предназначалась для решения задач первого (низшего) уровня управления и не требовала мощной архитектурной поддержки, заложенной в системе IBM 360. Поэтому в ней была предложена собственная упрощенная система инструкций процессора и, следовательно, оригинальное программное обеспечение. Модели М2000 и М3000 имели структуру и архитектуру системы IBM 360 с определенными отклонениями, исходя из возможностей элементно-технологической базы, доступной отечественной промышленности. При этом все модели оснащались общим спектром периферийных устройств, среди которых значительное место занимали средства связи с объектом. Второй очередью развития этой системы впоследствии явились более совершенные комплексы М6000, М4030. По изначальному замыслу ЭВМ М1000, М2000 и М3000 рассматривались как агрегатная система средств вычислительной техники АСВТ и являлись частью формируемой в те годы государственной системы приборов (ГСП), предназначенной для решения прежде всего задач управления в народном хозяйстве. Речь шла о создании и производстве широчайшего спектра взаимокомплектуемого оборудования: датчиков, измерительных устройств, исполнительных механизмов, агрегатных средств вычислительной техники и т.д., позволяющих проектным путем создавать любые системы для управления народнохозяйственными объектами, что формировало гигантский рынок продукции приборостроения.

НИИ УВМ был назначен головной организацией по созданию и производству АСВТ. Это  совпало по времени с принятием  другого решения, касающегося создания системы резервирования пассажирских мест в московском авиаузле Аэрофлота. Поэтому первой областью применения вычислительных комплексов М2000, М3000 системы АСВТ стали не технологические объекты, а система резервирования мест на авиалиниях Аэрофлота "Сирена". С 1973 по 1998 год "Сирена" "перевезла" более 100 млн. пассажиров. По существу "Сирена" стала первой в СССР системой массового обслуживания глобального характера, включающей сотни терминальных станций (рабочих мест кассиров), десятки центров обработки и коммутации сообщений, разбросанных по всему Советскому Союзу и взаимодействующих с Московским центром резервирования мест на авиалиниях Аэрофлота. Разработчики системы столкнулись с большими трудностями: сравнительно скромными вычислительными мощностями, неудовлетворительными по помехам линиями связи, транзисторной элементной базой второго поколения, смутными представлениями о требуемых функциональных параметрах системы. При этом необходимо было в сжатые сроки создать и ввести в эксплуатацию гигантский аппаратный монстр (число только аппаратурных шкафов в системе превышало 1000 шт.) с высокой надежностью функционирования. "Иногда казалось, что эта задача не решается в принципе, - вспоминал В.В.Резанов. - Лишь благодаря энтузиазму разработчиков Института проблем управления (ИПУ, Москва), НИИ УВМ и др. она все же была успешно решена". Главным конструктором системы "Сирена" был В.А.Жожикашвили (ИПУ).

Система "Сирена" включала:

- вычислительный комплекс для  Московского центра резервирования;

- средства связи с абонентами  по стандартным, в то время  еще слабо развитым и низкокачественным  каналам для передачи цифровой  информации;

- большую архивную быстродействующую  память с гарантией сохранности  информации в аварийных режимах;

- средства диалового общения системы с потребителем - пульты кассиров для формирования запросов клиентов и выдачи билета, справки, массовой информации на табло, индивидуальной справки и т.п.

- систему программного обеспечения,  рассчитанного на надежное функционирование  системы в интересах клиента  и Аэрофлота в целом.

В вычислительном центре системы был  использован дуплексный комплекс М3000, что существенно повысило надежность вычислительного центра. Комплекс обеспечивал  продажу до семи билетов в секунду  по спонтанным запросам кассиров, разбросанных по всей территории СССР.

В качестве основных каналов связи  были использованы телефонные и телеграфные  выделенные и коммутируемые каналы городских АТС. Все каналы связи  подключались к системе посредством  специально разработанной аппаратуры передачи данных, обеспечивающей пересылку  цифровой информации на скоростях 600 или 1200 бод.

Для центра сбора запросов по 256 каналам  связи и обмена данными с локальными вычислительными центрами был разработан специальный модуль распределительно-преобразующего устройства. Каждый из них обеспечивал  связь по 32 телефонным выделенным каналам, 32 телеграфным коммутируемым или  выделенным каналам городских телефонных станций. Распределительно-преобразующее  устройство имело в своем составе  адаптеры для подключения к машинным интерфейсам двух комплексов М3000. Таким  образом, обеспечивалась возможность  организации разветвленной двухсторонней  сети связи центра с терминалами  на расстоянии до 8 тыс.км со скоростью 600-1200 бод. При этом осуществлялась удовлетворительная защита информации от сбоев и помех. Абонентами такой сети могли быть любые аппараты телеграфной связи того времени, пульты кассиров и региональные центры переработки информации, формируемые впоследствии из комплексов М6000 и М7000. Такая организация системы связи позволила впоследствии, заменяя компоненты, осуществлять поэтапную модернизацию и развитие системы "Сирена", обеспечивая ее жизнеспособность до настоящего времени. Экзотической частью системы в составе вычислительного комплекса был магнитный барабан, используемый для создания архивной памяти большого объема и быстродействия как ключевой элемент защиты информации о пассажирах в аварийных режимах. Интересным элементом системы "Сирена" был пульт кассира, представляющий классический видеотерминал, позволивший осуществлять полный диалог пассажир-кассир-система при формировании запроса и подготовки билета или справки. Это было серийное оборудование, которым оснащались сотни касс. Следует помнить, что в то время в стране не было опыта разработки собственных операционных систем, программного обеспечения систем массового обслуживания, сетевых программных пакетов и т.п. Все это создавалось впервые и наново в режиме величайшей ответственности и сжатых сроков. Для "Импульса" работа над системой "Сирена" была серьезнейшей школой для каждого сотрудника и для коллектива в целом.

Комплексы М1000, М2000 и М3000 создавались  несколькими организациями Минприбора. М1000 разрабатывалась Тбилисским институтом средств автоматизации ТИСА, М2000 и М3000 - совместными усилиями НИИ УВМ, ИНЭУМ и СКБ Киевского завода ВУМ. Освоение этих моделей шло параллельно на Северодонецком приборостроительном заводе и Киевском заводе управляющих вычислительных машин.

Информация о работе Основоположники промышленной системотехники Уникальный "Импульс"