Полупроводниковые сверхрешётки

Автор работы: Пользователь скрыл имя, 09 Мая 2014 в 15:30, реферат

Краткое описание

В последние годы возрастает интерес исследователей, инженеров, технологов к слоистым структурам, состоящим из различных полупроводниковых (полупроводниковые сверхрешетки) или магнитных (магнитные мультислои) материалов. Полупроводниковые сверхрешетки и магнитные мультислои имеют характерные размеры слоев 10 – 1000 Å и их принято называть наноструктурами. Кроме полупроводниковых сверхрешеток и магнитных мультислоев к наноструктурам можно отнести и ряд других материалов: фуллерены, пористые кремниевые трубки, некоторые биологические объекты.

Содержание

Введение 3
1 Полупроводниковая сверхрешетка 4
2 Физические свойства сверхрешеток 6
3 Технология изготовления сверхрешеток 7
4 Энергетическая структура полупроводниковых сверхрешеток 10
5 Применение полупроводниковых сверхрешеток 15
Список используемой литературы 21

Вложенные файлы: 1 файл

Полупроводниковые сверхрешетки.docx

— 121.62 Кб (Скачать файл)

 
Рисунок 4 - Малоугловая рентгеновская дифракционная картина для сверхрешетки GaAs-AlAs, содержащей 6 слоев 

Экспериментальная и расчетная дифракционная картины очень хорошо согласуются не только по положению пиков, но и по интенсивности и ширине линий. Штриховая кривая на этом же рисунке соответствует теоретическим расчетам, при которых изменен период сверхрешетки всего на 0,28 нм, что соответствует изменению толщины всего на два атомных слоя. Отличие от экспериментальных результатов в этом случае существенно. Эти оценки свидетельствуют о возможности контроля этим методом совершенства границ и когерентности периодов с атомной точностью. В случае плавного изменения межплоскостного расстояния на границе между слоями сверхрешетки, кроме дополнительных рефлексов в малоугловой области наблюдаются сверхструктурные рефлексы (сателлитные отражения), сопровождающие основные рефлексы на рентгенограммах. 
Положение сверхструктурных рефлексов также определяется периодом модуляции многослойной структуры d:

 
,                                                          (6) 

где n – порядок сверхструктурного рефлекса, d* - межплоскостное расстояние основного рефлекса, θ+ и θ- - угловые положения сверхструктурных рефлексов соответственно со стороны больших и меньших углов.

Интенсивность и количество сверхструктурных рефлексов тем меньше, чем резче граница между слоями. Таким образом, наличие дополнительных рефлексов в малоугловой области и отсутствие сверхструктурных рефлексов, сопровождающих основные дифракционные пики, свидетельствует о совершенстве границ раздела.

Идея создания полупроводниковой сверхрешетки возникла в результате поиска новых приборов с отрицательным дифференциальным электросопротивлением. При наложении внешнего электрического поля по оси сверхрешетки электроны, ускоряясь, будут увеличивать абсолютные значения z-компоненты волнового вектора. Если длина свободного пробега электронов намного больше периода сверхрешетки, то электроны, не успев рассеяться, достигнут границ сверхрешеточной зоны Бриллюэна в точках   и  , где их эффективная масса отрицательная. В этом случае дрейфовая скорость электронов будет падать с ростом приложенного электрического поля, что соответствует отрицательному электросопротивлению. Впервые отрицательное электросопротивление было обнаружено в сверхрешетке GaAs–GaAlAs.

Еще один квантовый эффект наблюдается в полупроводниковых сверхрешетках при условии, что время рассеяния электронов достаточно велико. При приложении к сверхрешетке внешнего электрического поля E электроны начнут совершать периодическое движение в минизоне, испытывая при этом брэгговское рассеяние на ее обеих границах. Частота осцилляций определяется выражением:

 

                                                                  (7)

 

Для электрического поля Е = 103 В/см и постоянной решетки d = 100 Å n = 250 ГГц.

Необычные свойства сверхрешеточных структур дают много интересных возможностей для их приборного применения. Большую группу составляют оптоэлектронные приборы, в частности, фотоприемники, светоизлучающие приборы, пассивные оптические элементы. 
Инжекционные лазеры на гетеропереходах имеют значительные преимущества перед обычными полупроводниковыми лазерами, поскольку инжектированные носители в лазерах на гетеропереходах сосредоточиваются в узкой области. Применение вместо одиночных гетеропереходов многослойных сверхрешеточных структур позволяет изготовить лазеры, работающие на нескольких длинах волн. 
В качестве примера на рисунке 5 показано схематическое изображение структуры многоволнового лазера.

В структуре имеется четыре активных слоя      AlxGa1-xAs разного состава (x = x1, x2, x3, x4), благодаря которым лазер одновременно работает на четырех длинах волн λ1,λ2,λ3 иλ4. Активные слои отделены друг от друга промежуточными слоями AlyGa1-yAs (y > x1, x2, x3, x4). Для создания p-n-переходов в структуре проводилась локальная диффузия Zn. Поскольку в активных слоях мольные доли Al различны, лазерная генерация от каждого p-n-перехода возникает на разных длинах волн.

 
Рисунок 5 - Схематическое изображение многоволнового лазера

 

Список используемой литературы

1. Силин  А.П. Полупроводниковые сверхрешетки // Успехи физических наук. – 1985. - т.147, вып. 3.- C. 485 – 521

2. Бастар Г. Расчет зонной структуры сверхрешеток методом огибающей функции.- В кн: Молекулярно-лучевая эпитаксия и гетероструктуры / Под ред. Л. Ченга, К. Плога.- М.: Мир, 1989.- С. 312 –347.

3. Цанг  В.Т. Полупроводниковые лазеры и  фотоприемники, полученные методом  молекулярно-лучевой эпитаксии.- В  кн: Молекулярно-лучевая эпитаксия и гетероструктуры / Под ред. Л. Ченга, К. Плога.- М.: Мир, 1989.- С. 463 –504.

 

 


Информация о работе Полупроводниковые сверхрешётки