Автор работы: Пользователь скрыл имя, 09 Января 2014 в 20:32, шпаргалка
Теория ПП основана на неории электропроводности, согластно которой атом в-в состоят из ядра окруженного оболочками — траекториями электронов. Электрон находится в движении на растоянии от ядра в пределах слоев (оболочек). Определяется энергией каждых из слоев, можно поставить энергетический уровень, чем дальше электрон тем выше уровень. Согласно энергетическому спектру, если электрон переходит с одного уровня на другой то выделяется либо поглощается квант энергии.
Увеличение температуры приводит к смещению (дрейфу) характеристик в сторону более высоких токов коллектора. При этом в схеме ОБ при фиксированном токе эмиттера DiК= Da iЭ температурный дрейф характеристик выражен довольно слабо, что объясняется слабой температурной зависимостью коэффициента передачи тока эмиттера a. У характеристик для схемы ОЭ, снимаемых при iБ =const, в связи с сильной температурной зависимостью коэффициента передачи тока базы b температурный дрейф очень велик - изменение тока коллектора D iК= D b iБ может достигать несколько десятков и даже сотен процентов. Температурная нестабильность характеристик транзистора в схеме ОЭ требует специальных мер по стабилизации рабочей точки.
Структура активной области может быть как "pnp", так и "npn".
Возможные применения: это универсальные усилительные приборы, предназначенные для применения в схемах усиления, генерации и преобразования сигналов.
В обозначении марки транзистора третий элемент (цифра) характеризует подклассы приборов по значениям рассеиваемой ими мощности и предельной частоты.
Основные разновидности биполярных транзисторов:
Маломощные (P макс < 0,3Вт) ( ГТ122, КТ127)
Маломощные, средней частоты (f < 300 МГц) (КТ215)
Маломощные, высокой частоты и СВЧ (f < 300 МГц) (КТ315, 1Т308)
Cредней мощности (0,3Вт < P макс < 1,5Вт) (ГТ405)
Средней мощности, средней частоты (0,3Вт < P макс < 1,5Вт)
Cредней мощности, высокой частоты (0,3Вт < P макс < 1,5Вт) (ГТ712)
Большой мощности, низкой частоты (P макс > 1,5Вт) (КТ702)
Большой мощности, средней частоты (КТ809)
Большой мощности, высокой частоты и СВЧ (2Т960)
(Обозначения биполярных транзисторов : 1 - pnp типа, 2 - npn типа)
Это ПП прибор, работа которого обусловлена током основных носителей заряда протекающим через проводящий канал, сопротивление которого модулируется (управляется) электрическим полем.
Преимущество: высокое входное сопротивление, малая мощность управления, высоко частотность, работа при низких температурах, высокая технологичность изготовления.
Полевые транзисторы делятся на транзисторы с затвором на p-n переходе, с изолированным затвором и со структурой МДП (Металл Окисел Полупроводник).
Принцип действия состоит в том, что при подачи обратного напряжения затвора и стока изменяется область перехода.
Это ПП прибор, работа которого обусловлена током основных носителей заряда протекающим через проводящий канал, сопротивление которого модулируется (управляется) электрическим полем.
Преимущество: высокое входное сопротивление, малая мощность управления, высоко частотность, работа при низких температурах, высокая технологичность изготовления.
В качестве основных характеристик ПТ представляются функциональные зависимости между токами и напряжениями, прикладываемыми к их электродам: входная характеристика IЗ = f(UЗИ) при UСИ = const; характеристика обратной связи I3=f(UСИ) при UЗИ = const; характеристика прямой передачи IС=f(UЗИ) при UСИ = const; выходная характеристика IС = f(UСИ) при UЗИ = const.
На практике широко используются лишь две последние характеристики, причем первую из них часто называют передаточной характеристикой.
Входная характеристика и характеристика обратной связи применяется редко, так как в абсолютном большинстве случаев входные токи ПТ пренебрежимо малы (от 10-8 до 10-12 А) по сравнению с токами, протекающими через элементы, подключенные ко входу.
На рисунке изображена характеристика прямой передачи IС =f(UЗИ). И изображено семейство выходных характеристик IС =f(UСИ) при различных значениях напряжения затвора UЗИ. Каждая характеристика имеет три участка - омический (для UСИ < UЗИ0- UЗИ), насыщения (для UСИ > UЗИ0 - UЗИ) и пробоя. При UЗИ = 0 с увеличением напряжения UС ток IС вначале нарастает почти линейно, однако далее характеристика перестает подчиняться линейному закону; ток IС начинает расти медленнее, ибо его увеличение приводит к повышению падения напряжения в канале и потенциала вдоль канала. Вследствие этого увеличиваются толщина запирающего слоя и сопротивление канала в области, прилегающей к стоку, это приводит к замедлению возрастания самого тока IС. При напряжении насыщения UСИ = UЗИ0 сечение канала вблизи стока приближается к нулю и рост IС прекращается.
Это ПП прибор, работа которого обусловлена током основных носителей заряда протекающим через проводящий канал, сопротивление которого модулируется (управляется) электрическим полем.
Основными параметрами является:
Это ПП прибор, работа которого обусловлена током основных носителей заряда протекающим через проводящий канал, сопротивление которого модулируется (управляется) электрическим полем.
Основными параметрами является:
эквивалентная схема полевого транзистора, основным элементом этой схемы, характеризующим усилительные свойства прибора, является зависимый генератор тока SUз. Частотные и импульсные характеристики транзистора определяются емкостями электродов: затвор - сток Cзи, затвор - сток Cзс, сток - исток Cзи. Емкости Cзи и Cзс зависят от площади затвора и степени легирования канала, емкость Cзс - самая маленькая среди рассмотренных.
Rз = 10^10 Ом; Rсиdif =(0.1-1) МОм; Rэкв=(50-800) Ом; Сз=(0.2-10) мкФ.
канал n – типа
канал p – типа
Тепловые параметры полевого транзистора характеризуют его устойчивость при работе в диапазоне температур. При изменении температуры свойства полупроводниковых материалов изменяются. Это приводит к изменению параметров полевого транзистора, в первую очередь , тока стока, крутизны и тока утечки затвора.
Зависимость изменения тока стока от температуры определяется двумя факторами: контактной разностью потенциалов р-п перехода и изменением подвижности основных носителей заряда в канале. При повышении температуры контактная разность потенциалов уменьшается, сопротивление канала падает, а ток увеличивается. Но повышение температуры приводит к уменьшению подвижности носителей заряда в канале и тока стока. При определенных условиях действие этих факторов взаимнокомпенсируется и ток полевого транзистора перестает зависеть от температуры. На рис. 5. приведены стокозатворные характеристики при различных температурах окружающей среды и указано положение термостабильной точки. Зависимость крутизны характеристики от температуры у полевых транзисторов такая же как и у тока стока. С ростом температуры ток утечки затвора увеличивается. Хотя абсолютное изменение тока незначительно , его надо учитывать при больших сопротивлениях в цепи затвора. В этом случае изменение тока утечки затвора может вызвать существенное изменение напряжения на затворе полевого транзистора и режима его работы. Температурная зависимость тока утечки затвора полевого транзистора с р-п переходом приведена на рис. 6 . В полевом транзисторе с изолированным затвором ток затвора практически не зависит от температуры.
Рис. 5. Сток - затворные характеристики полевого транзистора при разных температурах.
Этот транзистор имеет структуру металл - диэлектрик - полупроводник и может быть двух типов: с индуцированным каналом (рисунок 4.4, а) и с встроенным каналом (рисунок 4.4, б). Если основой транзистора является кремний, то диэлектриком может быть слой окиси кремния, поэтому такую структуру чаще всего называют МОП-транзистор (металл - окисел - полупроводник).
Транзистор с индуцированным
каналом имеет области истока
n+ и стока n+, выводы от которых
выполнены путем металлизации
через отверстия в двуокиси
кремния. На слой двуокиси
а) б)
Рис. 4.4. Структура МДП ПТ с индуцированным (а) и встроенным (б) каналами.
Если на затвор подать положительное напряжение, то положительный заряд обкладки затвора индуцирует соответствующий отрицательный заряд в полупроводниковой области канала. С возрастанием положительного напряжения этот заряд, созданный притянутыми из глубины p-области проводника электронами, которые являются неосновными носителями, превращает поверхностны слой полупроводника p-типа в проводящий канал n-типа, соединяющий исходные n+-области истока и стока. Поэтому уменьшается сопротивление материала между истоком и стоком, что ведет к увеличению тока стока. Таким образом, благодаря электростатической индукции между истоком и стоком при достижении напряжения UЗИ ПОР происходит инверсия типа проводимости полупроводника. Слой полупроводника p-типа превращается в полупроводник n-типа. До инверсии сопротивление между истоком и стоком определяется сопротивлением закрытого перехода, так как до инверсии имеет место структура n+-р-n+. После инверсии образуется n-проводимость и структура становится n+-n-n+. Меняя напряжение на затворе, можно управлять током стока. Если взять подложку n-типа, то можно построить МДП-транзистор с индуцированным p-каналом, который управляется отрицательным напряжением на затворе.
Транзистор с встроенным каналом имеет конструкцию, подобную предыдущей. Между истоком и стоком методом диффузии создают слаболегированный канал c проводимостью n--типа при проводимости подложки p-типа. Возможно другое сочетание. Канал имеет проводимость p-типа, а подложка — проводимость n-типа. В отсутствие напряжения на затворе (рис. 4.4, б) ток между истоком и стоком определяется сопротивлением n--канала. При отрицательном напряжении на затворе концентрация носителей заряда в канале уменьшится (канал обедняется носителями) и в нем появляется обедненный слой. Сопротивление между истоком и стоком увеличивается и ток уменьшается. При положительном напряжении на затворе в канале индуцируется дополнительный отрицательный заряд (канал обогащается носителями) и ток стока увеличивается, потому что, увеличивается его проводимость.
Полевой транзистор как 4-хполюсник
g11 – водная проводимость
g12 – коэф выходной передачи
g21 – коэф входной передачи
g22 – выходная проводимость
Транзистор с индуцированным каналом имеет области истока n+ и стока n+, выводы от которых выполнены путем металлизации через отверстия в двуокиси кремния. На слой двуокиси окиси кремния напыляют слой алюминия, служащий затвором. Можно считать, что алюминиевый затвор и полупроводниковый материал p-типа образуют плоский конденсатор с окисным диэлектриком.
+
Если на затвор подать
положительное напряжение, то положительный
заряд обкладки затвора индуцирует
соответствующий отрицательный
заряд в полупроводниковой
Информация о работе Шпаргалка по электротехнике и электронике