Переработка отработанного топлива

Автор работы: Пользователь скрыл имя, 09 Декабря 2013 в 01:16, реферат

Краткое описание

1. ЯДЕРНЫЕ "ОТХОДЫ"
2. ПЕРЕРАБОТКА ОТРАБОТАННОГО ТОПЛИВА
3. ВЫСОКОУРОВНЕВЫЕ ОТХОДЫ ПОСЛЕ ПЕРЕРАБОТКИ
4. РАЗМЕЩЕНИЕ И ХРАНЕНИЕ ОТРАБОТАННОГО ТОПЛИВА
5. РАЗМЕЩЕНИЕ И ХРАНЕНИЕ ОСТЕКЛОВАННЫХ ОТХОДОВ
6. СНИМАЕМЫЕ С ЭКСПЛУАТАЦИИ РЕАКТОРЫ

Вложенные файлы: 1 файл

Реферат по реакторы и парогенераторы.doc

— 221.50 Кб (Скачать файл)

Во Франции один завод  мощностью 400 тонн в год по переработке  металлического топлива от реакторов с газовым охлаждением работает в Марселе. В Ла Гааге с 1976 года производится переработка оксидного топлива, и в настоящее время здесь эксплуатируется два завода мощностью по 800 тонн в год. Индия имеет завод по переработке оксидного топлива с производительностью 100 тонн в год в Тарапуре, а также аналогичные заводы в Кальпакаме и Тромбе. Япония строит большой завод в Рокакошо, хотя большая часть исчерпанного топлива, повторно обрабатывается в Европе (что составляет всего 100 тонн в год). Россия имеет завод по переработке оксидного топлива в Челябинске мощностью 400 тонн в год.     

После переработки восстановленный  уран дообогащается и отправляется на предприятие по изготовлению свежего  реакторного топлива. Плутоний же должен пройти технологический цикл по изготовлению смешанного оксидного топлива (MOX-топлива) на специальном заводе, который часто интегрируется с перерабатывающим предприятием. Во Франции, например, для того чтобы избежать создания неиспользуемых запасов плутония, выход продукции перерабатывающего предприятия строго скоординирован с загрузкой мощностей завода по изготовлению MOX-топлива. Если плутоний хранится в течение нескольких лет, то увеличивающийся в нем уровень содержания изотопа Америция-241 (используемого в бытовых датчиках задымления помещений), создаст трудности при производстве MOX-топлива из-за повышения уровня гамма излучения.

 

Таблица 11

Объем производства смешанного оксидного топлива (т/год)

Год:

1998

2005

Бельгия и Франция

175

195

Япония

10

100

Россия

-

60

Великобритания

8

120

Всего для легко-водных реакторов

193

475


Новые заводы, предусмотренные к вводу в  строй к 2005 году, находятся в стадии строительства. По прогнозам МАГАТЭ их мощность к 2005 году составит от 430 до 610 тонн в год.

3. Высокоуровневые отходы после переработки      

Несмотря на малые количества (см. 5.1), высокоуровневая отходы, возникающие  после переработки отработанного  ядерного топлива, требуют большой  осторожности в обращении, размещении и хранении, так как они содержат продукты деления и некоторые трансурановые элементы, активно испускающие альфа, бета и гамма-излучение, а также выделяющие много теплоты. Теплота выделяется, главным образом, от продуктов деления. Такие материалы обычно называют как "ядерные отходы".      

Если учесть, что потребляемая мощность электроэнергии, произведенной на атомных электростанциях, в расчете на одного человека составляет, примерно, один киловатт (для жителей Западной Европы), то на каждого из нас ежегодно приходится, примерно, по 20 мл высокоуровневых отходов от переработки. После остекловывания или битумирования это количество занимает объем не более одного кубического сантиметра (см. также Рисунки 6 и15).     

Следует отметить, что  отходы от военных программ продолжают доминировать в таких странах  как США и Россия на протяжении многих десятилетий, независимо от темпов развития гражданской ядерной энергетики. Это "наследство", возникшее с начала 1940-ых годов и приведшее к загрязнению поверхностных слоев земли, утечек из резервуаров для хранения и дорогостоящим мерам по реабилитации загрязненных территорий, создало проблемы тем странам, которые его и произвели.     

Жидкие отходы, произведенные  на перерабатывающих заводах, временно хранятся в охлаждаемых, многостенных резервуарах из нержавеющей стали, внутри железобетонных защитных корпусов. Их необходимо затем преобразовать в компактные, химически инертные твердые частицы перед окончательным захоронением.     

Достигается это с  помощью процедуры, которая называется остекловывание. Использование, так  называемого, Австралийского "синтетического камня" (синрок) является наилучшим способом для изоляции отходов, но это, однако, пока не получило широкого применения в гражданской ядерной энергетике.     

Технологии на гражданских  заводах по остекловыванию основаны на "кальцинировании" отходов (выпаривании до получения сухого порошка) с последующим перемешиванием в боросиликате. Расплавленная стеклянная масса, смешанная с сухими отходами, помещается в большие резервуары, изготовленные из нержавеющей стали и вмещающие до 400 кг продукта. Крышка резервуара надежно приваривается. Ежегодные отходы от эксплуатации одного реактора мощностью 1000 МВт содержатся в 5 тоннах такой стеклянной массы (это приблизительно двенадцать резервуаров высотой 1.3 метра каждый и диаметром 0.4 метра). В Великобритании, например, они хранятся в бункерах глубоко под землей в вертикальном положении.     

Описанные процессы были разработаны  и проверены на опытных заводах  в 1960-ых годах. К 1966 году несколько тонн высокоуровневых отходов от повторно обработанного топлива были остеклованы в Великобритании в Хоруилле, однако исследования были тогда приостановлены как неприоритетные из-за недостаточного количества высокоуровневых отходов. Высокотемпературные испытания остеклованной массы показали, что она остается нерастворимой даже в случае физического разрушения стекла. Подобные результаты были получены и на Французских предприятиях по остекловыванию отходов между 1969 и 1972 годами.     

Остекловывание высокоуровневых  радиоактивных отходов впервые получило индустриальные масштабы во Франции с 1978 года. Сегодня такие работы проводятся на пяти предприятиях в Бельгии, Франции и Великобритании с производительностью до 1000 тонн остеклованных отходов в год.      

В 1996 году два подобных завода были открыты в США. Один, в Вест Уилле (штат Нью-Йорк), должен обрабатывать 2.2 миллиона литров высокоуровневых отходов от гражданских ядерных реакторов, накопившихся от переработанного ядерного топлива за 25 лет их работы, а другой - в Саванна Ривер, предназначен для остекловывывания большого количества военных ядерных отходов.     

Остеклованные отходы хранят в течение  некоторого времени перед окончательным  долговременным размещением, позволяя уменьшиться радиоактивности и  выделяемой теплоте. Вообще говоря, чем дольше такой материал будет выдержан перед захоронением, тем меньше проблем с ним будет потом. В зависимости от используемых методов размещения, интервал между выгрузкой топлива из реактора и окончательным захоронением остеклованных отходов может составлять 50 лет.     

Обработка таких материалов требует  обязательного использования специальных  мер, гарантирующих безопасность персонала. Как и во всех производствах, где  присутствует гамма-излучение, самый  простой и дешевый способ предохранения - это дистанция (увеличение расстояния до источника излучения в десять раз уменьшает экспозиционную дозу до одного процента).

Рисунок 15. Изоляция высокоактивных отходов     

Такие покрытые эмалью боросиликатные капсулы, изготавливаются на заводе по остекловыванию отходов в Великобритании начиная с 1960-ых годов. В такой  капсуле содержится материал, химически  идентичный высокоуровневым отходам, после переработки отработанного ядерного топлива, затраченного на производство электроэнергии для одного человека.     

Для транспортировки высокоуровневых  отходов (или отработанных топливных  сборок) используются специальные прочные  контейнеры. Они разработаны таким образом, что выдерживают все возможные аварийные ситуации, сохраняют свою целостность и защищают от радиоактивного излучения. В ситуациях, при которых такие контейнеры были вовлечены в серьезные инциденты, они ни разу не создали никакой опасности радиоактивного загрязнения. Высокие требования, предъявляемые к конструкциям таких контейнеров, делают практически невозможным их повреждение даже с использованием взрывчатых веществ и поэтому они совершенно непривлекательны для попыток террористического нападения.

4. Размещение и хранение отработанного топлива      

Принцип прямого захоронения отработанного  ядерного топлива принят в США  Швеции, хотя в последнем случае предполагается его регенерация  в будущем. С 1988 года Швеция имеет  действующее централизованное хранилище для отработанного ядерного топлива (CLAB) емкостью 5000 тонн. Отработанное топливо отправляется на это хранилище после, примерно, их годичного хранения в реакторах в бассейнах выдержки.      

В CLAB для охлаждения и  защиты от ионизирующих излучений отработанное топливо будет храниться под водой в течение, примерно, сорока лет. К 2020 году это хранилище будет полностью заполнено, и к этому времени должно быть готово новое хранилище для окончательного захоронения, хотя уже сегодня строятся и несколько больше емкости.

Рисунок 16A     

Уменьшение уровня радиоактивности  продуктов деления в одной  тонне отработанного ядерного топлива PWR реактора     

В то время как выделенные высокоактивные отходы остекловывают для придания им физической устойчивости к разрушению, отработанное топливо, предназначенное для прямого размещения и хранения, всегда изготавливается в очень устойчивой керамической форме UO2. При непосредственной работе с отработанным ядерным топливом или извлекаемыми из него отходами, важная роль принадлежит степени их охлаждения и радиоактивного распада. Спустя сорок лет после выгрузки топлива из реактора, в нем остается менее одной тысячной доли начального уровня радиоактивности, и с таким материалом намного легче обращаться (см. Рисунок 16A). Эта особенность отличает отходы атомной промышленности от химических отходов, которые всегда остаются опасными. Чем более длительному сроку хранения подвергаются отходы атомной промышленности, тем менее опасными они становятся, и тем более проще их подвергать последующей обработке.

Рисунок 16B     

Радиоактивность высокоактивных отходов, выделенных из одной тонны ядерного топлива PWR реактора (приведено сравнение с активностью того количества руды из которого эта тонна топлива была получена)      

В США все отработанное топливо  хранится в месте расположения реактора и в настоящее время это является частью топливного цикла. В дальнейшем отработанное топливо перемещают из бассейнов выдержки или сухих хранилищ на государственные склады промежуточного хранения. Здесь отработанное топливо ожидает своего окончательного захоронения. Заказчики этих операций по хранению и размещению отработанного топлива оплачивают дополнительно, примерно, 0.1 цента за киловатт час затраченной электроэнергии на эти процедуры. К концу 1999 года эти расходы составили почти 16 миллиардов долларов США.

5. Размещение и хранение остеклованных отходов      

Независимо от того остеклованы  ли высокоактивные отходы после переработки  или они находятся в отработанных топливных сборках, с ними, в конечном счете, необходимо распорядиться самым  безопасным образом. В дополнение к концепциям безопасности, применяемым к ядерному топливному циклу, это означает, что после захоронения отходы не должны подвергаться каким-либо дополнительным процедурам. Хотя конечное размещение высокоактивных отходов не будет производится еще в течение нескольких ближайших лет, но все приготовления уже сделаны с учетом природных условий хранения и количества таких отходов.      

Комитет по управлению радиоактивными отходами при Агентстве по ядерной  энергии Организации экономического сотрудничества и развития (OECD) указал принципы геологического размещения радиоактивных отходов исходя из экологических и этических перспектив. При этом особенно подчеркивались интересы последующих поколений. В 1995 году Комитет установил "что геологическая стратегия размещения отходов должна разрабатываться и осуществляться с учетом фундаментальных этических и экологических аспектов", и состоит в том, чтобы:

... "сбалансировано  учитывая экологические и этические  принципы, продолжать разработку  геологических хранилищ для долгоживущих радиоактивных отходов, которые должны быть изолирована от биосферы в течение более нескольких сот лет", и

... постепенная " реализация  схем геологического размещения  отходов давала возможность их  адаптации, в свете научного прогресса и развития социальной терпимости, в течение нескольких десятилетий, и не исключала бы возможности применения иных технологий, которые могли бы появиться на более поздних стадиях".      

Конечное размещение высокоактивных отходов должно осуществляться с очень высокими гарантиями безопасности. Вопрос в том, насколько мы можем быть уверены в долговременной безопасности, до того как это не предпринято в больших масштабах? Очевидно, что высокий уровень доверия может быть достигнут на основе продолжения тщательных научных и проектных исследований, которые осуществляются в настоящее время. Решаемые задачи при этом не являются ни очень большими, ни исключительно сложными.      

Во-первых, выделенные радиоактивные  отходы (или отработанное ядерное  топливо) находятся в устойчивой и нерастворимой форме. Во-вторых, они помещаются в массивные сосуды, изготовленные из нержавеющей стали, или коррозионно-стойкие резервуары (например, стальные или медные). В-третьих, они геологически изолируются.      

Степень опасности иллюстрируется на Рисунке 16B (подобная картина имеет место и для отработанного ядерного топлива). Из приведенных данных можно сделать два важных вывода. Первый состоит в том, что степень радиационной опасности уменьшается в тысячу раз за период времени от 10 до 1000 лет, с относительно небольшим последующим изменением. Это связано с тем, что почти все короткоживущие продукты деления распадаются за это время до незначительных концентраций.      

Информация о работе Переработка отработанного топлива