Тепловые насосы

Автор работы: Пользователь скрыл имя, 10 Июня 2013 в 20:10, реферат

Краткое описание

В настоящее время перед Россией, как и перед всем миром, остро стоят две взаимосвязанные проблемы: экономия топливно-энергетических ресурсов и уменьшение загрязнения окружающей среды. В условиях истощения запасов органического топлива и резкого повышения затрат на освоение новых месторождений становится все более нерациональным сжигание угля, газа и нефтепродуктов в миллионах маломощных котельных и индивидуальных топочных агрегатах, вызывающее большое количество вредных выбросов в атмосферу и существенное ухудшение экологической обстановки в городах и мире.

Вложенные файлы: 1 файл

Тепловые насосы. Применение в жилых зданиях для отопления, горяч.doc

— 2.19 Мб (Скачать файл)

 

Экспериментальный энергоэффективный  дом в Никулино-2 (Москва)


         Экспериментальный  дом                                                            Тепловой насос

 

 


Система сбора низкопотенциального  тепла удаляемого воздуха и грунта.

 Обозначения:

1 – вентиляционные шахты; 

2 – вытяжной вентилятор;

3 – теплообменник-утилизатор;

4 – циркуляционный насос; 

5 – испаритель теплового насоса;

6 – регулирующий вентиль.

 

Энергоэффективная сельская школа в Ярославской области

 

Теплоснабжение с помощью  тепловых насосов относится к  области энергоэффективных и энергосберегающих экологически чистых технологий и получает все большее распространение в мире. Расширяется опыт применения тепловых насосов и в России. Одним из таких объектов является сельская школа в Ярославской области, введенная в эксплуатацию в сентябре 1998 года в деревне Филиппово Любимского района (рис. 1, 2). Фактически это первая в России сельская школа, оборудованная теплонасосной системой теплоснабжения, использующей низкопотенциальное тепло грунта поверхностных слоев Земли. Технология теплоснабжения школы была разработана ОАО «ИНСОЛАР-ИНВЕСТ», теплонасосное оборудование изготовлено и смонтировано ФГУП «Рыбинский завод приборостроения», проектирование школы осуществлено ОАО «Ярославгражданпроект».


 

 

Рис. 1. Энергоэффективная сельская школа в Ярославской области

 

 

 

 

 

 

 

 

Рис. 2. Фасад школы

 

 

 

 

 

 

 

 

 

Здание школы представляет собой двухэтажное кирпичное строение из силикатного кирпича площадью =950 м2, объемом =6 900 м3, с толщиной стен 640–680 мм, площадью оконных и дверных проемов =230 м2 и =20 м2 соответственно. Здание имеет техническое подполье и двускатную крышу с чердачным перекрытием. Школа расположена на окраине д. Филиппово, примерно в 100 км от Ярославля, и рассчитана на 162 учащихся и 20 преподавателей. В таблице приведены расчетные нагрузки на системы жизнеобеспечения школы.

Расчетные нагрузки на системы  жизнеобеспечения школы

Наименование параметра

Количество

Расчетные теплопотери здания, кВт

130

Среднесуточный расход тепловой

энергии на горячее водоснабжение, кВт» ч

162

Пиковый часовой расход горячей  воды, м3

1/1

Подведенная к зданию школы электрическая мощность, кВт

96


Основным фактором, фактически определившим технологию и конфигурацию теплоснабжения школы, был значительный дефицит  свободной электрической мощности в дневное время суток. В итоге  была создана аккумуляционная теплонасосная  система теплоснабжения, максимально вписанная в суточный график электропотребления школы и использующая высвобождающиеся ночью электрические мощности и ночной тариф на электроэнергию для аккумулирования тепловой энергии в водяных баках-аккумуляторах.

В качестве источника тепловой энергии низкого потенциала для испарителей тепловых насосов используется грунт поверхностных слоев Земли. Основным теплообменным элементом системы теплосбора являются вертикальные грунтовые теплообменники коаксиального типа. При устройстве в грунте вертикальных регистров труб с циркулирующим по ним теплоносителем, имеющим пониженную относительно окружающего грунтового массива температуру, происходит отбор тепловой энергии от грунта и отвод ее в испаритель теплонасосной установки.

Теплонасосная станция (Рис.3-4) расположена в отдельно стоящем здании теплового пункта, которое ранее планировалось для размещения угольной котельной. В этом же здании в цокольном этаже размещена холодильная камера для школьной столовой, охлаждаемая от теплонасосных установок.

 

Рис. 3. Общий вид теплового пункта школы                 Рис. 4. Оборудование теплового пукта

 

Теплонасосная система теплоснабжения школы включает следующие основные элементы:

- теплонасосные установки АТНУ-15;

- баки-аккумуляторы АКВА-3000, в каждом  из которых установлено три  ТЭНа по 9 кВт с таймерами;

- систему сбора низкопотенциального  тепла грунта – восемь вертикальных  грунтовых теплообменников – термоскважин глубиной 40 м каждая, расположены снаружи вокруг здания теплового пункта на расстоянии 3 м от стен;

- циркуляционные насосы, контрольно-измерительную  аппаратуру.

Теплонасосная система теплоснабжения школы эксплуатируется уже в  течение четырех отопительных сезонов. Ежегодно, перед началом отопительного сезона, специалистами ФГУП «Рыбинский завод приборостроения» проводятся регламентные работы, а ежемесячно в течение отопительного периода – контрольные осмотры работающего оборудования. Кроме того, тепловой узел оснащен контрольно-измерительной аппаратурой (тепловыми и электрическими счетчиками), с помощью которой ведется постоянный мониторинг эксплуатационных режимов школы.

Теплонасосная система теплоснабжения школы обеспечивает экономию энергии от 30 до 45 %, что позволило за четыре года эксплуатации сэкономить около 60 т у. т.

Хотелось бы отметить, что проблема рационального использования топливно-энергетических ресурсов в ЖКХ является сегодня одной из важнейших для России. Введение в России элементов рыночной экономики, повышение цен на традиционное топливо и связанные с этим трудности в топливоснабжении населенных пунктов в значительной мере обострили проблемы теплоснабжения, в первую очередь, децентрализованных потребителей тепловой энергии в сельской местности. Наиболее экономичным представляется комплексное решение этой проблемы за счет широкого внедрения новых энергосберегающих технологий теплоснабжения, максимально использующих возможности существующей инфраструктуры и инженерных сетей.

 

Перспективы внедрения  тепловых насосов в различных  секторах экономики.

Жилищно-коммунальный комплекс

В жилищно-коммунальном комплексе теплонасосные установки (ТНУ) находят наибольшее применение (и в мировой и в Российской практике) преимущественно для отопления и горячего водоснабжения (ГВС). Здесь можно выделить два направления:

  1. Автономное теплоснабжение от тепловых насосов.
  2. Использование ТНУ в рамках существующих систем централизованного теплоснабжения (СЦТ).

Для автономного  теплоснабжения коттеджей, отдельных домов (в том числе школ, больниц и т.п.), городских районов, населенных пунктов используются преимущественно тепловые насосы с тепловой мощностью 10…30 кВт в единице оборудования (коттеджи, отдельные дома) и до 5,0 МВт (для районов и населенных пунктов). В качестве источников низкопотенциальной теплоты используют преимущественно грунтовые воды (Тинт = 8-15 °С), грунт (Тинт = 5-10 °С), воды рек и озер (Тинт = 5-20 °С), теплоту вент-выбросов и канализационных стоков  
инт = 10-30 °С). Децентрализованное теплоснабжение позволяет применить современные низкотемпературные системы отопления с температурой теплоносителя Тивт = 35…60°С, обеспечивающие достаточно высокие коэффициенты преобразования ТНУ µ= 3,5…5,0.

Применение децентрализованных систем теплоснабжения на базе тепловых насосов в районах, где тепловые сети отсутствуют, либо в новых жилых районах позволяет избежать многих технологических, экономических и экологических недостатков систем центрального теплоснабжения. Конкурентными им по экономическим параметрам могут быть только районные мини-котельные, работающие на газе (если пренебречь экологическими требованиями). В настоящее время действует значительное число таких установок. А в перспективе, в связи с принятием Киотских соглашений по ограничению вредных выбросов в атмосферу и постоянным ростом цен на энергоносители, количественная потребность в них будет постоянно возрастать.

Особенностью теплоснабжения в России (в отличие от большинства  стран мира) является использование систем централизованного теплоснабжения (СЦТ) в крупных городах.

Одновременная выработка  электрической и тепловой энергии  на ТЭЦ имеет бесспорные преимущества с точки зрения использования топлива. Многолетнее развитее этого направления позволило достигнуть достаточно высокой эффективности, приобрести большой опыт в эксплуатации СЦТ. И хотя эти системы имеют ряд технологических и экологических недостатков, они реально существуют и подлежат совершенствованию. При совершенствовании СЦТ необходимо учитывать следующие отрицательные факторы:

  1. Огромные выбросы низкопотенциальной теплоты, прежде всего системой охлаждения технической воды на ТЭЦ, увеличивающиеся в период снижения тепловой нагрузки в неотопительный период.
  2. Резко увеличивающийся пережог топлива при выработке электроэнергии в условиях снижения тепловой нагрузки.
  3. Большие затраты теплоты на нагрев сетевой воды, восполняющей ее потери в теплосетях;
  4. Дефицит сетевой воды во многих районах города из-за ограниченной теплопропускной способности существующих сетей.

О масштабах этих факторов можно судить по статистическим данным выработки тепла для теплоснабжения городов. В последние годы отпуск теплоты на ТЭС РАО ЕЭС России составлял 600 - 650 млн Гкал, а на районных котельных около 50 млн Гкал в год. Выброс низкопотенциальной теплоты в системах охлаждения технической воды (СОТВ) составлял 140 - 150 млн Гкал, что эквивалентно 24 - 26 млн т.у.т. непроизводительного расхода топлива. В системе АО «Мосэнерго» выбросы СОТВ на ТЭЦ Москвы составляют 45 - 50 млн Гкал в год, что равносильно потере 7,2 - 8 млн т.у.т./год.

Применение ТН в системах централизованного теплоснабжения позволяет существенно повысить технико-экономические показатели систем городского энергохозяйства. Технически возможна утилизация до 50% низкопотенциального тепла (НТП). В системе РАО ЕЭС это эквивалентно замещению 10 млн. т.у.т.. При этом может быть достигнуто замещение органического топлива в больших объемах, чем при децентрализованном теплоснабжении.

Экономия (замещение) органического  топлива с помощью тепловых насосов, в конечном счете, происходит за счет полезного вовлечения выбросов низкопотенциальной теплоты на ТЭЦ. Это сокращение достигается двумя способами:

  1. Прямым использованием охлаждающей технической воды ТЭЦ в качестве источника низкопотенциальной теплоты для теплового насоса (в обход градирни).
  2. Использованием в качестве источника низкопотенциальной теплоты для тепловых насосов обратной сетевой воды (ОСВ), возвращаемой на ТЭЦ, температура которой снижается.

Первый способ реализуется, когда тепловой насос размещен вблизи ТЭЦ, второй - когда используется вблизи потребителей теплоты. В обоих случаях температурный уровень источника низкопотенциальной теплоты достаточно высок, что создает предпосылки для работы ТНУ с высоким коэффициентом преобразования: 3 - 7.

Если механизм энергосбережения первого способа очевиден, то по второму необходимы пояснения. Поток ОСВ возвращается на ТЭЦ, пройдя через испаритель теплового насоса, захоложенный до температуры 20 - 25 °С (температура захоложенной ОСВ обосновывается с учетом особенностей СЦТ).

При не полностью загруженных  теплофикационных отборах (при температуре  наружного воздуха выше минус 15 °С) снижение температуры сетевой воды требует отбора пара из теплофикационных отборов на ее подогрев. Это автоматически  увеличивает выработку электроэнергии при тепловом потреблении и загрузку теплофикационных отборов, что, в свою очередь, приводит к уменьшению расхода пара в конденсатор турбины и, тем самым к снижению тепловых выбросов на ТЭЦ и сокращению непроизводительного расхода топлива.

При существенной доле захоложенной обратной сетевой воды ее целесобразно направлять в конденсатор паровой турбины (в основной или в дополнительный встроенный теплообменный пункт). В этом случае конденсатор выполняет функции дополнительного подогревателя ОСВ и, таким образом, в нем происходит утилизация НПТ ТЭЦ.

Таким образом, использование  схем теплоснабжения с применением тепловых насосов и с захолаживанием ОСВ дает следующие результаты:

  1. Прирост электрической мощности (на 6…10 %) от установленной мощности теплофикационной турбины без затрат топлива на этот прирост.
  2. Прирост тепловой мощности на величину утилизируемой теплоты, ранее выбрасываемой в систему охлаждения технической воды.
  3. Снижение теплопотерь при транспортировке сетевой воды в магистральных трубопроводах.
  4. Возрастание отопительной нагрузки (на 15…20 %) при том же расходе первичной сетевой воды и снижение дефицита в сетевой воде на ЦТП в удаленных от ТЭЦ микрорайонах.
  5. Появление резервного источника для покрытия пиковых тепловых нагрузок.

Для работы в системе центрально теплоснабжения требуются крупные тепловые насосы большой мощности.

Промышленные и перерабатывающие предприятия

На промышленных предприятиях ТНУ находят применение для утилизации теплоты водооборотных систем в технологических процессах, теплоты вентиляционных выбросов, теплоты сбросных вод. На предприятиях, имеющих котельные, теплота от тепловых насосов используется для подогрева подпиточной воды для котлов и собственных тепловых сетей.

Информация о работе Тепловые насосы