Автор работы: Пользователь скрыл имя, 23 Декабря 2012 в 23:43, реферат
Теплообменным аппаратом называют всякое устройство, в котором один теплоноситель - горячая среда, передает теплоту другому теплоносителю - холодной среде. По принципу работы аппараты делят на регенеративные, смесительные и рекуперативные.
Особенно широкое развитие во всех областях техники получили рекуперативные аппараты, в которых теплота от горячей среды к холодной передается через разделительную стенку.
ВВЕДЕНИЕ……………………………………………………………….….…..3 Виды тепловых аппаратов и их классификация……………………………….4
Аппараты со змеевиками………………………………………………………14
ЗАКЛЮЧНИЕ…………………………………………………………………..18
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТРЫ…………………………….…...20
СОДЕРЖАНИЕ
ВВЕДЕНИЕ…………………………………………………………
Аппараты со змеевиками……………………………………………………
ЗАКЛЮЧНИЕ………………………………………………………
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТРЫ…………………………….…...20
ВВЕДЕНИЕ
Теплообменным аппаратом называют всякое устройство, в котором один теплоноситель - горячая среда, передает теплоту другому теплоносителю - холодной среде. По принципу работы аппараты делят на регенеративные, смесительные и рекуперативные.
Особенно широкое развитие во всех областях техники получили рекуперативные аппараты, в которых теплота от горячей среды к холодной передается через разделительную стенку.
Теплообменные аппараты могут иметь самые разнообразные назначения - паровые котлы, конденсаторы, пароперегреватели, приборы центрального отопления и т.д. Теплообменные аппараты в большинстве случаев значительно отличаются друг от друга как по своим формам и размерам, так и по применяемым в них рабочим телам. Несмотря на большое разнообразие теплообменных аппаратов, основные положения теплового расчета для них остаются общими. В теплообменных аппаратах движение тел осуществляется по трем основным схемам. Если направление движения горячего и холодного теплоносителей совпадают, то такое движение называют прямотоком. Если направление движения горячего теплоносителя противоположно движению холодного теплоносителя, то такое движение называют противотоком. Если же горячий теплоноситель движется перпендикулярно движению холодного теплоносителя, то такое движение называется перекрестным потоком. Кроме этих основных схем движения, в теплообменных аппаратах применяют более сложные схемы движения, включающие все три основные схемы.
1. Виды тепловых аппаратов и их классификация
1.Кожухотрубчатые
• по назначению (первая буква индекса): Т – теплообменники; Х – холодильники; К – конденсаторы; И – испарители;
• по конструкции (вторая буква индекса) – Н — с неподвижными трубными решетками; К — с температурным компенсатором на кожухе; П — с плавающей головкой; У — с U-образными трубами; ПК — с плавающей головкой и компенсатором на ней;
• по расположению (третья буква индекса): Г – горизонтальные; В – вертикальные.
Кожухотрубчатые теплообменники представляют собой аппараты, выполненные из пучков труб, собранных при помощи трубных решеток, и ограниченные кожухами и крышками со штуцерами.
Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали.
Трубное и межтрубное пространства в аппарате разобщены, а каждое из этих пространств может быть разделено при помощи перегородок на несколько ходов. Перегородки устанавливаются с целью увеличения скорости, а следовательно, и интенсивности теплообмена теплоносителей. Теплообменники этого типа предназначаются для теплообмена между различными жидкостями, между паром и жидкостями или между жидкостями и газами. Они применяются тогда, когда требуется большая поверхность теплообмена.
Трубки теплообменников
В большинстве случаев пар (греющий теплоноситель) вводится в межтрубное пространство, а нагреваемая жидкость протекает по трубкам. Конденсат из межтрубного пространства выходит к конденсатоотводчику через штуцер, расположенный в нижней части кожуха. Для компенсации температурных удлинений, возникающих между кожухом и трубками, предусматривается возможность свободного удлинения труб за счет различного рода компенсаторов.
Особенность кожухотрубчатых
Вертикальные аппараты имеют
большее распространение, так как они
занимают меньше места и более удобно
располагаются в рабочем помещении.
Во избежание резкого снижения теплоотдачи
от конденсирующегося пара к стенке в
корпусе теплообменника должны быть предусмотрены
краны для выпуска воздуха как из нижней
части аппарата над поверхностью конденсата.
В кожухотрубных ТА трубы могут быть расположены
по сторонам шестиугольников или, что
одно и то же, равносторонних треугольников
(треугольной) или по концентрическим
окружностям.
Вопрос о том, какой из теплоносителей
направлять в трубы или в межтрубное пространство,
должен решаться с точки зрения не только
интенсификации теплообмена, но и надежности
работы ТА. Если теплоноситель вызывает
коррозию или механическое повреждение
труб, то лучше его пропустить внутрь труб,
так как экономичнее выполнить трубы из
материала высокой стоимости, чем кожух.
В трубы целесообразно направлять теплоноситель
под большим давлением, чем в межтрубном
пространстве, чтобы не делать толстостенный
кожух, а также более загрязненный, поскольку
трубы очистить легче, чем межтрубное
пространство. Например, дымовые газы
обычно проходят в трубах, что уменьшает
засорение аппарата золой и сажей. Двухходовой
горизонтальный теплообменник типа Н
состоит из цилиндрического сварного
кожуха 8, распределительной камеры 11 и
двух крышек 4. Трубный пучок образован
трубами 7, закрепленными в двух трубных
решетках 3. Трубные решетки приварены
к кожуху. Крышки, распределительная камера
и кожух соединены фланцами. В кожухе и
распределительной камере выполнены штуцера
для ввода и вывода теплоносителей из
трубного (штуцера 1, 12) и межтрубного (штуцера
2, 10)
пространств. Перегородка 13 в распределительной
камере образует ходы теплоносителя по
трубам.
1 - Двухходовой горизонтальный теплообменник
с неподвижными решетками;
2 - Теплообменник с U-образными трубами.
Поскольку интенсивность теплоотдачи при поперечном обтекании труб теплоносителем выше, чем при продольном, в межтрубном пространстве теплообменника установлены зафиксированные стяжками 5 поперечные перегородки 6, обеспечивающие зигзагообразное по длине аппарата движение теплоносителя в межтрубном пространстве. На входе теплообменной среды в межтрубное пространство предусмотрен отбойник 9 — круглая или прямоугольная пластина, предохраняющая трубы от местного эрозионного изна
1 - Теплообменник типа К — с линзовым компенсатором;
2 – Теплообменник с плавающей головкой.
Теплообменник типа К — с линзовым компенсатором(Рис. 2) на корпусе. В этом аппарате температурные деформации компенсируются осевым сжатием или расширением компенсатора. Теплообменники с линзовыми компенсаторами применяют при небольших температурных деформациях (не более 13-15 мм) и невысоких давлениях в межтрубном пространстве (не более 0.5 МПа).
Применение кожухотрубчатых
На рис.3 изображен кожухотрубчатый
теплообменник с плавающей голо
кожухе вторая трубная решетка вместе с внутренней крышкой, отделяющей трубное пространство от межтрубного, образует так называемую плавающую головку. Такая конструкция исключает температурные напряжения в кожухе и в трубах. Эти теплообменники, нормализованные в соответствии с ГОСТ 14246—79, могут быть двух- или четырехходовыми, горизонтальными длиной 3, 6 и 9 мили вертикальными высотой 3 м. Допустимое давление охлаждающей среды в трубах до 1,0 МПа, в межтрубном пространстве — от 1,0 до 2,5 МПа. Диаметр кожуха от 600 до 1400 мм, высота труб 6,0 м.
В аппаратах типа У обеспечивается
свободное температурное
Теплообменники с U-образными трубами
применяют для нагрева и охлажд
Преимущество конструкции
Поскольку механическая очистка внутренней поверхности труб в аппаратах типа У практически невозможна, в трубное пространство таких аппаратов следует направлять среду, не образующую отложений, которые требуют механической очистки.
Для уменьшения засорения золой дымовые газы пропускают внутри трубок, а воздух — через межтрубное пространство.
При значительно больших давлениях в теплообменной аппаратуре применяют сальниковые компенсаторы. Однако сальниковые компенсаторы могут пропускать рабочую среду, что требует их периодическое регулирование, в связи с чем сальниковые компенсаторы применяют для аппаратов с малыми диаметрами.
2. Пластинчатый теплообменник
— это теплообменник
Пластинчатые теплообменники представляют собой аппараты, теплообменная поверхность которых образована набором тонких штампованных пластин с гофрированной поверхностью. Рабочие среды в теплообменнике движутся в щелевых каналах сложной формы между соседними пластинами в противопотоке. Каналы для греющего и нагреваемого теплоносителей чередуются между собой. Гофрированная поверхность пластин усиливает турбулизацию потоков рабочих сред и повышает коэффициент теплоотдачи.
Их разделяют по степени доступности поверхности теплообмена для механической очистки и осмотра на разборные, полуразборные и неразборные (сварные).
Наиболее широко применяют разборные пластинчатые теплообменники, в которых пластины отделены одна от другой прокладками. Монтаж и демонтаж этих аппаратов осуществляют достаточно быстро, очистка теплообменных поверхностей требует незначительных затрат труда.
Основные размеры и параметры наиболее распространенных в промышленности пластинчатых теплообменников определены ГОСТ 15518—83. Их изготовляют с поверхностью теплообмена от 2 до 600 м2 в зависимости от типоразмера пластин; эти теплообменники используют при давлении до 1,6 МПа и температуре рабочих сред от —30 до +180° С для реализации теплообмена между жидкостями и парами (газами) в качестве холодильников, подогревателей и конденсаторов.
Серийно выпускаемые разборные пластинчатые теплообменники могут работать с загрязненными рабочими средами при размере твердых включений не более 4 мм.
Разборный пластинчатый теплообменник
Устройство и принцип работы пластинчатого теплообменника достаточно просты. При стягивании пакета пластин образуется ряд каналов, по которым протекают жидкости учавтвующие в процессе теплообмена. Все пластины в пакете одинаковы, только развернуты одна относительно другой на 180 градусов. Такая установка пластин обеспечивает чередование горячих и холодных каналов. В процессе теплообмена жидкости движутся навстречу друг другу (в противотоке), и горячая жидкость передает тепло через стенку пластины. В местах их возможного перетекания находится или стальная пластина или двойное резиновое уплотнение, что практически исключает смешение жидкостей. Такой принцип построения пластинчатого теплообменника позволяет его быстро модифицировать, как в сторону увеличения количества пластин и тем самым увеличить мощность пластинчатого теплообменника, так и легко отремонтировать его в случае выхода из строя резинового уплотнения или теплообменной пластины.
Серийно выпускаемые пластинчатые теплообменники комплектуют пластинами, штампованными из листового металла толщиной 1 мм. Гофры пластин обычно имеют в сечении профиль равностороннего треугольника высотой 4—7 мм и основанием длиной 14—30 мм (для вязких жидкостей до 75 мм). Материал пластин — оцинкованная или коррозионно-стойкая сталь, титан, алюминий. К недостаткам пластинчатых теплообменников следует отнести невозможность использования их при давлении более 1,6 МПа.
Пластины неразборных
3. Спиральные теплообменники
Все большее распространение этих теплообменников в последнее время объясняется главным образом простотой изготовления и компактностью конструкции. В таком аппарате один из теплоносителей поступает в периферийный канал аппарата 3 и, двигаясь по спирали, выходит из верхнего центрального канала 1. Другой теплоноситель поступает в нижний центральный канал 4 и выходит из периферийного канала 2.
Площадь поперечного сечения каналов в таком теплообменнике по всей длине постоянна, поэтому он может работать с загрязненными жидкостями (загрязнение смывается потоком теплоносителя).
Рис.5 Спиральный теплообменник
В спиральных теплообменниках поверхность теплообмена образована двумя стальными лентами 1, 2 толщиной 3,5—6 мм и шириной 400—1250 мм, свернутыми в спираль так, что получаются каналы прямоугольного профиля, по которым противоточно движутся теплоносители. Достоинствами спиральных теплообменников являются повышенная компактность (большая поверхность теплообмена в единице объема) при одинаковых коэффициентах теплопередачи и меньшее гидравлическое сопротивление для прохода теплоносителей, недостатками их являются сложность изготовления и меньшая плотность.