Гидроэлектростанции и гидросооружения

Автор работы: Пользователь скрыл имя, 12 Июня 2013 в 10:22, реферат

Краткое описание

Люди очень давно научились использовать энергию воды для того, чтобы вращать рабочие колеса мельниц, станков, пилорам. Но постепенно доля гидроэнергии в общем количестве энергии, используемой человеком, уменьшилась. Это связано с ограниченной возможностью передачи энергии воды на большие расстояния. С появлением электрической турбины, приводимой в движение водой, у гидроэнергетики появились новые перспективы. Первой электростанцией трехфазного тока была Лаутенская гидроэлектростанция. На ней были установлены два одинаковых трехфазных синхронных генератора. Фазное напряжение при помощи трансформаторов повышалось с 50 до 5000 вольт. Ее электроэнергия использовалась для питания осветительной сети города Хейльбронна, а также ряда небольших заводов и мастерских.

Содержание

Введение
Основные сооружения и оборудование гидроэлектростанций
Аварии и происшествия на ГЭС
Заключение
Список использованной литературы

Вложенные файлы: 1 файл

гэс.rtf

— 3.84 Мб (Скачать файл)

В турбинном режиме ГАЭС использует для выработки электроэнергии запасенную в верхнем бассейне воду. ГАЭС работает в турбинном режиме в часы «пик», когда нагрузка энергосистемы возрастает.

Помимо обеспечения электроэнергией ГАЭС выравнивает режим работы тепловых электростанций, уменьшая при этом удельный расход топлива на выработку 1 кВт*ч энергии. Примером такого использования водных ресурсов является Балаковская ГАЭС. Вместе с Саратовской ГЭС, Балаковской АЭС и ТЭЦ-4 гидроаккумулирующая станция образует крупнейший энергокомплекс, способный покрывать дефицит электроэнергии в часы максимальной нагрузки.

 

Рис. 2. Гидроаккумулирующая электростанция (схема):

 

а -- вертикальный разрез; б -- план: 1 -- верхний аккумулирующий бассейн; 2 -- водоприёмник; 3 -- напорный водовод; 4 -- здание электростанции; 5 -- нижнее питающее водохранилище; 6 -- плотина с водосбросом; 7 -- нормальный подпорный уровень воды; 8 -- уровень сработки.

 

Приливные электростанции (ПЭС)

Колебания уровня морей и океанов, достигающие у побережья некоторых районов земного шара 15-20 м, объясняется взаимным действием сил притяжения луны и Солнца, причем величина солнечного прилива в 2,6 раза меньше лунного. Наибольшая высота прилива наблюдается в период, когда Солнце, Луна и Земля находятся на одной прямой. а наименьшая высота соответствует положению под прямым углом линий, проходящих через Солнце и Землю и через Луну и Землю. Кроме взаимного расположения планет, на высоту прилива влияют географическое положение ПЭС, форма береговой линии, глубина и рельеф дна, наличие ледового покрова.

Наибольшая высота прилива (8-10 м) наблюдается на побережье Охотского и Белого морей.

Принцип работы ПЭС: водный бассейн залива отгорожен от моря плотиной, имеющей водопропускные отверстия; в здании электростанции установлены турбины, способные работать только при течении воды из залива в море. Это однобассейновая ПЭС одностороннего действия. Рабочий процесс ее состоит из следующих циклов: наполнение бассейна, ожидание отлива, выработка электроэнергии, ожидание прилива. Очевидно, что при работе ПЭС по такой схеме электроэнергия вырабатывается лишь в течение ограниченного времени, а период отлива для этой цели не используется.

В однобассейновых ПЭС двухстороннего действия (рис. 3) электроэнергия вырабатывается как при приливе, так и при отливе. При наполнении открываются затворы 1 и 3, а при выходе воды - затворы 4 и 2 . Поток воды всегда движется в одном направлении: из отсека а в отсек в. Эта схема позволяет использовать на ПЭС обычные необратимые турбины.

 

Рис.3

 

В России c 1968 года действует экспериментальная ПЭС в Кислой губе на побережье Баренцева моря. На 2009 год её мощность составило 1,7 МВт. В советское время были разработаны проекты строительства ПЭС в Мезенской губе (мощность 11 000 МВт) на Белом море, Пенжинской губе и Тугурском заливе (мощностью 8000 МВт) на Охотском море, в настоящее время статус этих проектов неизвестен, за исключением Мезенской ПЭС, включённой в инвестпроект РАО «ЕЭС». Пенжинская ПЭС могла бы стать самой мощной электростанцией в мире -- проектная мощность 87 ГВт. Существуют ПЭС и за рубежом -- во Франции, Великобритании, Канаде, Китае, Индии, США и других странах. ПЭС «Ля Ранс», построенная в эстуарии р. Ранс (Северная Бретань) имеет самую большую в мире плотину, ее длина составляет 800 м. Плотина также служит мостом, по которому проходит высокоскоростная трасса, соединяющая города Св. Мало и Динард. Мощность станции составляет 240 МВт, в Норвегии - ПЭС Хаммерфест,в Канаде - ПЭС Аннаполис.

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками -- высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в составе энергосистемы, располагающей достаточной мощностью электростанций других типов.

Для создания экономичной приливной станции необходимы определённые природные условия. В частности, должен быть большой перепад уровней во время отлива и прилива (не менее шести метров), особенности береговой линии, которые позволяют создать плотину и водный бассейн соответствующих размеров. На нашей планете такие места найти не так уж и просто. Это побережье американского штата Мэн, канадская провинция Нью-Брансуик, Персидский залив, отдельные регионы Аргентины, южная Англия, северная Франция, северные области европейской части России. Впрочем, даже станции, сооруженные в указанных регионах, не смогли бы достойно конкурировать с уже действующими ТЭС по стоимости производимой энергии.

Проекты приливных электростанций обычно предусматривают наличие двух бассейнов. Это верховой и низовой водоёмы. Каждый из них должен быть дополнен водопропускными отверстиями и затворами. Во время прилива верховой бассейн заполняется водой, а затем отдаёт всю воду низовому, который опорожняется при отливе.

Существует мнение, что работа приливных электростанций тормозит вращение Земли, что может привести к негативным экологическим последствиям. Однако ввиду колоссальной массы Земли влияние приливных электростанций пренебрежимо мало. Кинетическая энергия вращения Земли (~1029 Дж) настолько велика, что работа приливных станций суммарной мощностью 1000 ГВт будет увеличивать длительность суток лишь на ~10−14 секунды в год, что на 9 порядков меньше естественного приливного торможения (~2Ч10−5 с в год).

 

Крупнейшая в мире приливная электростанция

 

Макет станции Ля Ранс, Франция

 

2. Аварии и происшествия на ГЭС

гидроэлектростанция авария социальный экологический

17 мая 1943 года -- подрыв Британскими войсками по операции Chastise плотин на реках Мёне (водохранилище Мёнезее) и Эдер (водохранилище Эдерзее), повлекшие за собой гибель 1268 человек, в том числе около 700 русских военнопленных.

9 октября 1963 года -- одна из крупнейших гидротехнических аварий на плотине Вайонт в северной Италии.

В ночь на 11 февраля 2005 года в провинции Белуджистан на юго-западе Пакистана из-за мощных ливней произошел прорыв 150-метровой плотины ГЭС у города Пасни. В результате было затоплено несколько деревень, более 135 человек погибли.

12 сентября 2007 года -- на Новосибирской ГЭС произошел крупный пожар на одном из трансформаторов по причине замыкания и вследствие этого возгорания битума и обшивки трансформатора.

5 октября 2007 года на реке Чу во вьетнамской провинции Тханьхоа после резкого подъема уровня воды прорвало плотину строящейся ГЭС Кыадат. В зоне затопления оказалось около 5 тысяч домов, 35 человек погибли.

3 августа 2009 года -- возгорание на трансформаторе напряжения открытого распределительного устройства 200 кВ Бурейской ГЭС.[6]

16 августа 2009 года -- пожар в мини-АТС Братской ГЭС, выход из строя аппаратуры связи и телеметрии ГЭС[7] (Братская ГЭС входит в тройку крупнейших ГЭС России).

17 августа 2009 года -- крупная авария на Саяно-Шушенской ГЭС (Саяно-Шушенская ГЭС самая мощная электростанция России).

Авария на Саяно-Шушенской ГЭС

Индустриальная техногенная катастрофа, произошедшая 17 августа 2009 года. В результате аварии погибло 75 человек, оборудованию и помещениям станции нанесён серьёзный ущерб. Работа станции по выработке электроэнергии приостановлена. Последствия аварии отразились на экологической обстановке акватории, прилегающей к ГЭС, на социальной и экономической сферах региона. В результате проведённого расследования непосредственной причиной аварии было названо усталостное разрушение шпилек крепления крышки турбины гидроагрегата, что привело к её срыву и затоплению машинного зала станции.

Данная авария является крупнейшей в истории катастрофой на гидроэнергетическом объекте России и одной из самых значительных в истории мировой гидроэнергетики. «Авария уникальна, -- сказал, в частности, министр РФ по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий С. К. Шойгу. -- Ничего подобного в мировой практике не наблюдалось». Тем не менее оценка последствий катастрофы в экспертном и политическом сообществе неоднозначна. Некоторые специалисты и организации, в том числе тот же Сергей Шойгу, сравнивают Саяно-Шушенскую катастрофу по её значимости и влиянию на экономические и социологические аспекты жизни России с аварией на Чернобыльской АЭС. Другие эксперты считают, что эти катастрофы несравнимы по масштабам.

Саяно-Шушенская гидроэлектростанция на реке Енисей является крупнейшей ГЭС России и одной из наиболее крупных ГЭС в мире. Она расположена на границе Красноярского края и Хакасии. Строительство ГЭС началось в 1968 году, первый гидроагрегат был пущен в 1978 году, последний -- в 1985 году. В постоянную эксплуатацию электростанция была принята в 2000 году. Технически ГЭС состоит из бетонной арочно-гравитационной плотины высотой 245 м и приплотинного здания ГЭС, в котором размещены 10 радиально-осевых гидроагрегатов мощностью по 640 МВт. Установленная мощность ГЭС составляет 6400 МВт, среднегодовая выработка -- 24,5 млрд кВт·ч. Плотина ГЭС образует крупное Саяно-Шушенское водохранилище сезонного регулирования. Ниже по течению Енисея расположена контррегулирующая Майнская ГЭС, составляющая с Саяно-Шушенской ГЭС единый производственный комплекс.

33 000 000 мі грунта и скальных пород было перемещено гидростроителями при возведении гигантской плотины Саяно-Шушенской ГЭС. Уложенного при строительстве плотины бетона хватило бы на постройку автострады от Санкт-Петербурга.

 

Саяно-Шушенской ГЭС до аварии…

 

Социальные последствия

     



На момент аварии в машинном зале станции находилось 116 человек, в том числе один человек на крыше зала, 52 человека на полу зала (отметка 327 м) и 63 человека во внутренних помещениях ниже уровня пола зала (на отметках 315 и 320 м). Из них сотрудниками станции были 15 человек, остальные являлись работниками различных подрядных организаций, осуществлявших ремонтные работы (большая часть из них -- сотрудники ОАО «Саяно-Шушенский Гидроэнергоремонт»). Всего на территории станции (в том числе вне зоны, затронутой аварией) находилось около 300 человек. В результате аварии погибло 75 человек, пострадало 13 человек[1]. Тело последнего погибшего было найдено 23 сентября[47]. Полный список погибших с указанием мест обнаружения тел опубликован в акте технического расследования комиссии Ростехнадзора. Большое количество погибших объясняется нахождением большинства людей во внутренних помещениях станции ниже уровня пола машинного зала и быстрым затоплением этих помещений.

Экологические последствия

Авария оказала негативное воздействие на окружающую среду: масло из ванн смазки подпятников гидроагрегатов, из разрушенных систем управления направляющими аппаратами и трансформаторов попало в Енисей, образовавшееся пятно растянулось на 130 км. Общий объём утечек масла из оборудования станции составил 436,5 мі, из которых ориентировочно 45 мі преимущественно турбинного масла попало в реку. С целью недопущения дальнейшего распространения масла по реке были установлены боновые заграждения; для облегчения сбора масла применялся специальный сорбент, но оперативно прекратить распространение нефтепродуктов не удалось; пятно было полностью ликвидировано лишь 24 августа, мероприятия по очистке прибрежной полосы планируется завершить к 31 декабря 2009 года. Загрязнение воды нефтепродуктами привело к гибели около 400 тонн промышленной форели в рыбоводческих хозяйствах, расположенных ниже по течению реки; фактов гибели рыбы в самом Енисее отмечено не было. Общая сумма экологического ущерба предварительно оценивается в 63 млн. рублей.

Экономические последствия

В результате аварии полностью разрушен и выброшен из шахты гидроагрегат № 2, разрушена также шахта гидроагрегата. У гидроагрегатов № 7 и № 9 разрушены генераторы. Существенные повреждения получили и другие гидроагрегаты. Разрушены стены и крыша машинного зала в районе гидроагрегатов № 2, 3, 4. В районе гидроагрегатов № 2, 7, 9 разрушено перекрытие машинного зала. Разной степени повреждения получило и иное оборудование станции, расположенное в машинном зале и вблизи него,-- трансформаторы, краны, лифты, электротехническое оборудование. Общие потери, связанные с повреждением оборудования, оцениваются в 7 млрд. рублей.

Восстановление станции

Работы по восстановлению ГЭС начались практически сразу после аварии. 19 августа 2009 года создана дирекция по ликвидации последствий аварии во главе с главным инженером станции А. Митрофановым. На первом этапе работ основной задачей являлось восстановление энергоснабжения станции и разбор завалов в машинном зале. Завалы были полностью разобраны к 7 октября, 21 сентября 2009 года началось восстановление стен и крыши машинного зала, эта работа по плану должна была быть завершена к 11 ноября, но была закончена досрочно, 6 ноября. Одновременно ведутся работы по демонтажу наиболее пострадавших гидроагрегатов; особую сложность представляет демонтаж остатков гидроагрегата № 2, который планировалось завершить к концу января 2010 года, однако данный срок выдержан не был, и окончание демонтажа гидроагрегата теперь запланировано на март-апрель 2010 года. Работы по восстановлению ГЭС планируется завершить к декабрю 2014 года.

 

 

Заключение

 

С 13 по 24 ноября 2008 г. в Гааге (Голландия) проходила Шестая конференция сторон Рамочной конвенции ООН по изменению климата, в ней принимают участие представители более 160 стран. На этой встрече должны быть окончательно разработаны механизмы внедрения международных документов, призванных предотвратить глобальное потепление на планете., в том числе было принято решение о развитии "чистых" технологий. Это отличная возможность для развивающихся стран действительно пойти по пути устойчивого развития, основанного на использовании энергоэффективных технологий и возобновляемых источниках энергии. Однако развитие таких технологий будет вряд ли возможно, если не будут существенно сокращены кредиты на строительство и эксплуатацию АЭС и крупных гидроэлектростанций, а также проектов, связанных с использованием традиционных источников энергии. Что касаемо гидроэлектростанций, то кроме того, что они маломощны, именно благодаря им и у экологов, и у спасателей появилась поговорка "где плотины - там смерть".

Информация о работе Гидроэлектростанции и гидросооружения