История развития проводной многоканальной электросвязи

Автор работы: Пользователь скрыл имя, 24 Апреля 2014 в 23:06, реферат

Краткое описание

Изначально электрическая связь была проводной. Лишь в конце XIX века была открыта и использована возможность связи без проводов, посредством электромагнитных волн, распространяющихся в свободном пространстве. К настоящему времени беспроводные технологии получили исключительно широкое распространение. Однако, несмотря на использование самых современных средств и методов обработки сигналов, беспроводные средства связи проигрывают по пропускной способности кабельным линиям и вряд ли когда-нибудь их превзойдут.

Содержание

Введение 3
1 Зарождение техники многоканальной электросвязи. Простейшие методы разделения сигналов 5
2 Аналоговые системы передачи 8
3 Цифровые системы передачи плезиохронной цифровой иерархии 14
4 Цифровые системы передачи синхронной цифровой иерархии 18
5 Мультиплексирование с разделением по длинам волн. Оптические транспортные сети 21
Заключение 27
Список использованных источников 28

Вложенные файлы: 1 файл

История развития проводной многоканальной электросвязи.doc

— 188.50 Кб (Скачать файл)

Первоначально несущие WDM использовались только для передачи трафика систем SDH. Системам WDM была уготована роль магистральных транспортных систем, работающих по схеме точка-точка. Однако каждая несущая в системах WDM принципиально могла передавать поток цифровых сигналов, сформированный по законам любой синхронной (для глобальных сетей) или асинхронной (для локальных сетей) технологии. Последнее объясняется тем, что она дает технологиям ЛВС физический уровень модели взаимодействия открытых систем OSI. В результате одна несущая может передавать АТМ или IP, или Ethernet трафик ЛВС, другая – трафик SDH или PDH глобальных сетей и т.д. Для этого нужно лишь промодулировать конкретную несущую WDM соответствующим сигналом, т.е. иметь соответствующий интерфейс на входе систем WDM, которые считаются прозрачными для внешнего модулирующего сигнала, обеспечивающими ему передачу через физический уровень в канал связи (среду передачи).

Таким образом, технология WDM обеспечивает технологиям ATM, Ethernet и IP физический интерфейс для выхода на физический уровень и далее в оптическую среду передачи. Производители оборудования «старых глобальных технологий» SDH/SONET, желая продлить его моральный срок службы, также разработали все необходимые интерфейсы, используя свою альтернативу выхода на физический уровень и в среду передачи. Эта альтернатива основана на технике инкапсуляции ячеек АТМ или кадров/пакетов Ethernet и IP в виртуальные контейнеры SDH или виртуальные трибы SONET. Данная техника в настоящее время объединена под общим названием MSPP (Multiservice Provisioning Platform) – платформа мультисервисного обеспечения. Она позволяет использовать одну сеть SDH/SONET для передачи разнородного трафика путем использования различных интерфейсных карт с мультисервисными протоколами и процедурами инкапсуляции такого трафика. Это продлевает жизнь технологиям SDH/SONET и увеличивает их конкурентоспособность по отношению к WDM, что важно, учитывая малую распространенность сетей WDM в России.

Ясно, что при прочих равных условиях использование WDM имеет очевидные преимущества в передаче трафика ATM, Ethernet и IP, так как не требует инкапсуляции ячеек/кадров/пакетов в промежуточный модуль (STM/STS), что упрощает процедуру обработки трафика, уменьшает общую длину заголовков, повышая процент информационной составляющей трафика и эффективность передачи в целом.

Системы со спектральным уплотнением подразделяются на:

  • разреженные WDM – CDWM – системы с шагом по длине волны 20 нм, работающие в полосе 1270–1610 нм;
  • обычные WDM – WDM-системы с шагом несущих по частоте более 200 ГГц, позволяющие мультиплексировать не более 16 каналов;
  • плотные WDM – DWDM-системы с шагом несущих по частоте от 200 до 50 ГГц;
  • высокоплотные WDM – HDWDM-системы с шагом по частоте меньше 50 (25 и 12,5) ГГц; эта градация систем стандартами не предусмотрена, но часто используется в публикациях специалистов.

В настоящее время еще используется определенное количество 4–8-канальных систем WDM. Их можно условно отнести к системам второго поколения (кроме некоторых). В 1997–1999 годы были разработаны системы третьего поколения, основанные на стандартном частотном плане и имеющие 32, 64, 128 или больше каналов. В настоящее время начался этап их повсеместного внедрения. Характерная особенность этого этапа – использование принципа «увеличение числа каналов по мере роста трафика». Такой подход учитывается разработкой интерфейсных карт, рассчитанных на различное число портов (4, 8, 16), или возможностью установки нужного числа однотипных карт с фиксированным числом портов. Этим обуславливается и то, что системы, формально анонсированные как 160/320-канальные, фактически реализуются как 4-8-16-канальные с возможностью последующего наращивания числа каналов [14].

В России к строительству DWDM-сетей приступили только в XXI веке. В начале 2001 г. петербургская компания «Раском» объявила о старте проекта, который предусматривал увеличение пропускной способности ее базовой ВОЛС до уровня STM-64 (10 Гбит/с). Уже в июле этого же года были введены в эксплуатацию система передачи и оборудование линейного тракта DWDM на участке Москва – Санкт-Петербург. В состав участка кроме оконечных станций входили один регенерационный и шесть усилительных пунктов. Общая длина линии составляет 690 км, продолжительность усилительного участка – 96 км, регенерационного – 345 км. А ровно через год, в июле 2002 был введен в эксплуатацию участок Санкт-Петербург – граница с Финляндией. В результате суммарная потенциальная пропускная способность магистральной сети «Раском» возросла до 15 Тбит/с.

Первое время технология DWDM в России применялась только при строительстве магистральных сетей передачи данных или для создания одной-двух линий связи между городами. И только в 2005 году была построена первая региональная сеть – зоновая мультисервисная DWDM-сеть ОАО «Таттелеком». Имевшаяся на тот момент в распоряжении ОАО «Таттелеком» сеть SDH на основе каналов уровня STM-4 с растущим трафиком уже не справлялась, и в 2003 г. ОАО «Таттелеком» объявило конкурс на проведение модернизации своей транспортной сети. Победителем конкурса была признана китайская компания Huawei Technologies. В сентябре 2005 г. модернизация сети была завершена.

После проведенных работ сеть ОАО «Таттелеком» представляет собой два независимых кольца, DWDM и SDH, оба длиной в 916 км, проходящих по одному маршруту на территории Республики Татарстан. Кольца состоят из 15 узлов каждое и проходят через ключевые города Татарстана: Казань, Набережные Челны, Нижнекамск, Елабуга, Альметьевск, Лениногорск, Чистополь, Заинск и др.

В кольце DWDM транслируются семь длин волн, которые могут нести 10 защищенных (20 незащищенных) каналов Gigabit Ethernet, а также одно кольцо STM-16. Еще один уровень STM-16 несет независимое кольцо SDH. На основе технологии DWDM также построено семь оптических каналов Gigabit Ethernet: два канала Казань – Набережные Челны, каналы Казань – Нижнекамск, Казань – Альметьевск, Казань – Лениногорск, Казань – Елабуга, Казань – Чистополь. Независимое кольцо SDH выполняет функцию вывода в узлах потоков E1, поскольку эти потоки напрямую, без дорогого дополнительного оборудования с DWDM не выводятся.

Самая протяженная сеть DWDM в России находится в собственности ЗАО «Компания ТрансТелеКом». Компания начала построение сети DWDM в 2004 г., а 24 декабря 2004 г. органами Госсвязьнадзора было выдано разрешение на эксплуатацию первого участка сети Каменногорск – Санкт-Петербург – Москва длиной более 900 км. В ноябре 2005 г. был закончен третий этап строительства сети, и ее общая протяженность достигла 18 925 км.

Сеть «ТрансТелеКом» в настоящее время состоит из трех географических участков, которые строились поэтапно:

  • Каменногорск – Санкт-Петербург – Москва – Екатеринбург – Входная – Тайшет – Карымская – общей протяженностью около 8,7 тыс. км;
  • Выборг – Санкт-Петербург – Вологда – Ярославль – Москва – Самара – Челябинск – Омск – общей протяженностью около 6 тыс. км;
  • Омск – Барнаул – Иркутск – Тайшет – Карымская – общей протяженностью около 6 тыс. км.

В ближайшее время она будет увеличена еще на два участка:

  • Москва – Курск – Воронеж – Ростов-на-Дону – Волгоград – Саратов – Сызрань – Самара – общей протяженностью около 3,5 тыс. км;
  • БАМ – Хабаровск – Владивосток – общей протяженностью около 2,2 тыс. км.

Таким образом, сегодня «ТрансТелеКом» обладает самой разветвленной, протяженной и, что особенно важно, географически резервированной сетью DWDM в России.

Кроме упомянутых, существуют операторы, владеющие большими магистралями с использованием технологии DWDM.

Национальный оператор дальней связи «Ростелеком» обладает несколькими DWDM-магистралями. Это «Балтийская кабельная сеть» (БСК), построенная в партнерстве с TeliaSonera International Carrier, основное предназначение которой – присоединение мощностей «Ростелекома» к телекоммуникационным ресурсам стран Европы и увеличение мощности национальной сети. БКС включает в себя два основных участка: российский – Москва – Санкт-Петербург – Кингисепп и международный – Кингисепп – Логи – Котка. Сеть построена на оборудовании компании NEC в 2002 г.

В январе 2003 г. вступила в строй DWDM-магистраль «Ростелекома» Москва – Самара. На этом участке установлено оборудование, которое в максимальной конфигурации позволит «Ростелекому» пропускать 320 Гбит/с. В сентябре 2004 г. «Ростелеком» завершил внедрение DWDM на сетях Москва – Хабаровск и Москва – Новороссийск. В мае 2005 г. «Ростелеком» подписал контракт с компанией Alcatel, предусматривающий модернизацию волоконно-оптической сети «Ростелекома» на юге Российской Федерации.

Другим оператором является ЗАО «Сонера Рус», дочерняя компания Sonera Telecom, владеющее сетью Москва – Санкт-Петербург – Финляндия. Магистраль была полностью введена в эксплуатацию в марте 2002 г. и является российским сегментом единой международной магистральной сети Sonera, работающей по единым принципам с обеспечением полной прозрачности на всем протяжении и стопроцентным физическим резервированием линейной части. Ее пропускная способность на момент постройки была эквивалентна 8 каналам STM-16.  

Строительство DWDM-магистралей идет нарастающими темпами. При этом если первые проекты были нацелены скорее на соединение российского сегмента Интернета с международной сетью высокоскоростными каналами, то теперь цели и задачи изменились. На первый план выходит задача обеспечения высококачественной связью всех развитых регионов России. Кроме того, обострение конкуренции на рынке междугородной связи подталкивает операторов к созданию таких сетей. Увеличение количества больших проектов в области корпоративных сетей и сетей государственных министерств и ведомств вынуждает провайдеров увеличивать емкость своих магистралей с целью создания наиболее благоприятных условий для клиентов [15].

Заключение

С момента своего возникновения техника многоканальной электросвязи прошла несколько этапов, непрерывно совершенствуясь. На смену простейшим системам многократного телеграфирования и телефонирования в начале XX века пришли аналоговые системы передачи, благодаря которым фактически и была создана междугородная и международная сеть связи. Развиваясь по пути увеличения числа каналов и расширения используемой полосы частот, эта технология к 70–80-м годам достигла своего апогея, после чего постепенно была вытеснена цифровыми системами передачи плезиохронной цифровой иерархии.

Преимущества цифровой техники привели к тому, что плезиохронная иерархия стала основной технологией транспортной сети. Появление волоконной оптики открыло новый этап в развитии техники систем передачи – началось бурное развитие волоконно-оптических линий связи, которые к настоящему времени практически вытеснили линии, работающие по металлическому кабелю.

Следующим важным этапом эволюции технологий транспорта стало появление аппаратуры синхронной цифровой иерархии. Эта технология вывела на новый уровень услуги, предоставляемые транспортной сетью, а также управление и обслуживание в самой сети. Развитость средств встроенного контроля, телеметрии, маршрутизации сделала возможным управление телекоммуникационной сетью посредством специальной сети управления и обслуживания с помощью компьютерной техники. За счет применения систем резервирования и автоматического защитного переключения повысилась надежность сети.

Увеличение скоростей цифровых потоков к настоящему времени остановилось на отметке 40 Гбит/с, так как дальнейший рост связан с существенными техническими трудностями и на сегодняшний день экономически не оправдан. Большая эффективность использования пропускной способности оптического кабеля была достигнута за счет применения на новом технологическом уровне старой идеи частотного разделения каналов и создания технологии спектрального уплотнения. Оптические несущие в DWDM-системах могут передавать трафик любой природы – сигналы SDH, ATM, Ethernet, пакеты IP и т. п.

В ближайшем будущем следует ожидать дальнейшего развития волоконно-оптической техники в направлении создания полностью оптических сетей. В этих сетях передача сигналов, обработка, регенерация, коммутация и т. д. осуществляется без преобразования оптического сигнала в электрический.

Список использованных источников

  1. Шарле Д. Л. Хет-трик в матче с Атлантикой. Люди и события в истории электротехники и электросвязи. – М.: МЦНТИ, ООО «Мобильные коммуникации», 2002. – (Сер. «История электросвязи и радиотехники»).
  2. Телекоммуникационные системы и сети: Учебное пособие. В 3 томах. Том 1 – Современные технологии / под ред. В. П. Шувалова. – Изд. 3-е, испр. и доп. – М.: Горячая линия–Телеком, 2003.
  3. Курицын С. А. Основы построения телекоммуникационных систем передачи: Учебное пособие. – СПб.: Информационный центр «Выбор», 2004.
  4. Техника дальней связи / Н. Е. Плешков и др. – Л.: ВКАС им. С. М. Буденного, 1951.
  5. Резников М. Р. 50 лет советской связи. – М.: Связь, 1967.
  6. Система многоканальной связи К-1920 / Берлин З. Ю. и др. – Изд. 2-е, перераб. и доп. – М.: Связь, 1968.
  7. Мухин С. В. История развития каналообразующей аппаратуры в нашей стране (http://communications.narod.ru/canal/obzor.htm)
  8. Унифицированное высокочастотное оборудование для оконечных станций дальней связи / ред. Е. В. Комарова, В. К. Старикова. – М.: Связь, 1966.
  9. Гуревич В. Э. и др. Импульсно-кодовая модуляция в многоканальной телефонной связи. – М.: Связь, 1973.
  10. Слепов Н. Н. Современные технологии цифровых оптоволоконных сетей связи. – М.: Радио и связь, 2000.
  11. Скляров О. К. Волоконно-оптические сети и системы связи. – М.: СОЛОН-Пресс, 2004.
  12. Кулева Н. Н., Федорова Е. Л. Архитектурное представление сетевых слоев в процессах мультиплексирования в транспортных сетях SDH / СПбГУТ. – СПб, 2004.
  13. Потапов В. Т. DWDM-технологии — основа терабитных коммуникаций оптических сетей будущего // Фотон-Экспресс, №9, 2001.
  14. Слепов Н. Особенности современной технологии WDM // Электроника НТБ, №6, 2004.
  15. Лихачев Н. Технология DWDM на отечественных линиях связи // Connect! Мир связи, №2, 2006.

 


Информация о работе История развития проводной многоканальной электросвязи