Переработка отходов на основе резины

Автор работы: Пользователь скрыл имя, 29 Октября 2014 в 06:27, курсовая работа

Краткое описание

В курсовой работе рассматривается процесс переработки изношенных шин и получение мелкодисперсной крошки при помощи технологии Фирма “Турботехмаш» и "КОНСИТ-А". Фирма “Турботехмаш» и "КОНСИТ-А" предлагают экологически чистую технологическую линию по переработке изношенных шин с применением низкотемпературного охлаждения.
Проблема утилизации резиновых отходов остается актуальной, несмотря на совершенствование технологии производства новых изделий.

Содержание

Введение
1. Методы переработки резиновых отходов
1.1. Физические методы переработки резиновых отходов
1.2. Низкотемпературная технология утилизации шин
1.3. Описание технологической линии переработки шин
1.4. Бародеструкционная технология переработки покрышек
1.5. Полностью механическая переработка шин
1.6. Новейшая технология переработки (утилизации) шин
1.7. Физико-химические методы переработки резиновых отходов
1.8. Возможные направления использования резиновой крошки
1.9. Описание технологической схемы установки
2. Расчетная часть.
2.1.Технический расчет основного аппарата.
2.2. Расчет вспомогательного оборудования
2.3. Стандарты безопасности
3. Технико-экономические показатели установки
Вывод
Список использованной литературы

Вложенные файлы: 1 файл

Переработка отходов на основе резины.doc

— 269.50 Кб (Скачать файл)

Процесс регенерации включает следующие технологические операции: сортировку и измельчение резины, освобождение ее от текстильного волокна и металла, девулканизацию и механическую обработку девулканизата. Разные способы регенерации отличаются главным образом техническим оформлением процесса девулканизации. К устаревшим методам регенерации относятся щелочной, кислотный, термический, паровой, а также метод растворения. В России в настоящее время применяются три метода регенерации: водонейтральный, термомеханический и метод диспергирования. К недостаткам водонейтрального метода относятся периодичность процесса и низкое качество регенерата вследствие больших дозировок мягчителя. Наиболее широкое распространение получил непрерывный термомеханический метод. Процесс девулканизации в данном случае осуществляется в непрерывном шнековом девулканизаторе в присутствии мягчителя и активатора деструкции. Методом диспергирования получается регенерат наиболее высокого качества, однако данный процесс не получил пока широкого распространения вследствие сложностей, связанных с распылительной сушкой водной дисперсиии резины.

Каучуковое вещество регенерата состоит из гель-фракции, сохраняющей разреженную сетчатую структуру вулканизата, и золь-фракции, содержащей достаточно короткие отрезки разветвленных цепей с молекулярной массой около 10000. Поскольку в регенерате сохраняется сетчатая структура вулканизата, при введении регенерата в резиновую смесь возникает микронеоднородность, которая отрицательно сказывается на прочностных свойствах резин. Наличие низкомолекулярных фракций в регенерате вызывает снижение износостойкости резин. В этой связи регенерат практически не применяется в протекторных резинах. В настоящее время применение регенерата в резиновой промышленности ограничивается главным образом использованием его как технологической добавки, улучшающей обрабатываемость резиновых смесей, и как сырья для неответственных изделий.

Водонейтральный метод регенерации

Метод включает следующие основные операции: подготовку резины; подготовку мягчителей и активаторов; девулканизацию; влагоотделение и сушку; механическую обработку.

Рис.1 Схема участка измельчения резины. 1- загрузочный желоб; 2 – дробильные вальцы; 3 – ленточный транспортер; 4 – элеватор; 5 – сито вибрационное; 6 – отборочный транспортер.

 

Измельчение отходов. Изношенные покрышки, ездовые, авиационные и варочные камеры сортируют на группы по типу содержащихся в них каучуков. Рецептуру и режим девулканизации выбирают в зависимости от типа и содержания каучука в резине. После этого покрышки поступают на моечную машину и борторезательные станки. Вырезанные бортовые кольца, содержащие толстый металлокорд и металлическую проволоку удаляют, а покрышку разделяют на две части по короне и затем рубят на куски на механических ножницах. Полученные сектора подают на шинорез, где они измельчаются на куски размером 30-70 мм. Дальнейшее измельчение резины и отделение кордного волокна осуществляется на дробильных вальцах с рифленой поверхностью валков и на размольных вальцах, агрегированных с вибрационными сеялками. Технологическая цепочка может включать одни или несколько последовательно расположенных вальцев. Схема работы дробильных вальцев в агрегате с вибрационным ситом представлена на рис. 1. Вибрационное сито устанавливают на специальной монтажной площадке над вальцами или на втором этаже. Исходные куски подаются по направляющему желобу 1. Прошедшая через дробильные вальцы 2 резина ленточным транспортером 3 подается на элеватор 4 и далее на вибрационное сито 5, где производится рассев на мелкую фракцию, отбираемую по транспортеру 6, крупную фракцию, направляемую на доизмельчение и текстильные отходы, снимаемые с верхней сетки и направляемые потребителю или на дальнейшую переработку

 

1.8. Возможные направления использования резиновой крошки

 

  • порошковая резина с размерами частиц от 0,2 до 0,45 мм используется в качестве добавки (5…20%) в резиновые смеси для изготовления новых автомобильных покрышек, массивных шин и других резинотехнических изделий. Применение резинового порошка с высокоразвитой удельной поверхностью частиц (2500-3500 см. кв/г), получаемой при его механическом измельчении, повышает стойкость шин к изгибающим воздействиям и удару, увеличивая срок их эксплуатации;
  • порошковая резина с размерами частиц до 0,6 мм используется в качестве добавки (до 50…70%) при изготовлении резиновой обуви и других резинотехнических изделий. При этом свойства таких резин (прочность, деформируемость) практически не отличаются от свойств обычной резины, изготовленной из сырых каучуков;
  • порошковую резину с размерами частиц до 1,0 мм можно применять для изготовления композиционных кровельных материалов (рулонной кровли и резинового шифера), подкладок под рельсы, резинобитумных мастик, вулканизованных и не вулканизованных рулонных гидроизоляционных материалов;
  • порошковая резина с размерами частиц от 0,5 до 1,0 мм применяется в качестве добавки для модификации нефтяного битума в асфальтобетонных смесях.

Следует привести некоторые результаты исследования ее влияния на эксплуатационные свойства асфальтобетона. При исследовании изучалось влияние количество вводимой в асфальтобетонную смесь резиновой крошки по количеству и размерам частиц на трещиностойкость асфальтобетона и коэффициент сцепления колеса автомобиля с поверхностью проезжей части дороги.

  1. Установлено, что применение резиновой крошки в асфальтобетоне в два раза повышает коэффициент сцепления на мокром покрытии. На сухом покрытии существенных изменений нет.
  2. При использовании резиновой крошки от 0 до 1.0 мм трещиностойкость возрастает на 30 процентов. С уменьшением размера частиц трещиностойкость увеличивается. Особенно эффективно применение частиц крошки от 0.14 мм и меньше. Частицы меньше 0.08 за время перемешивания распадаются, составляющие модифицируют битум, улучшая его свойства.
  3. При небольших размерах частиц крошка распределяется по массе асфальтобетонной смеси более равномерно повышая упругую деформацию при отрицательных температурах.
  4. Объем дробленой резины в составе таких усовершенствованных покрытий yдолжен составлять около 2% от массы минерального материала, т.е. 60…70 тонн на 1 км дорожного полотна. При этом срок эксплуатации дорожного полотна увеличивается в 1,5 - 2 раза.

Такие порошки (размерами частиц от 0,5 до 1,0 мм) используются также в качестве сорбента для сбора сырой нефти и жидких нефтепродуктов с поверхности воды и почвы, для тампонирования нефтяных скважин, гидроизоляции зеле ных пластов и т.д.; резиновая крошка с размерами частиц от 2 до 10 мм используется при изготовлении массивных резиновых плит для комплектования трамвайных и железнодорожных переездов, отличающихся длительностью эксплуатации, хорошей атмосферостойкостью, пониженным уровнем шума и современным дизайном; спортивных площадок с удобным и безопасным покрытием; животноводческих помещений и т.д.

 

1.9. Описание технологической схемы установки.

 

Фирма “Турботехмаш» и "КОНСИТ-А" предлагают экологически чистую технологическую линию по переработке изношенных шин с применением низкотемпературного охлаждения.

Утилизация непрерывно накапливаемых автомобильных, сельскохозяйственных и других видов шин – острая экологическая проблема в большинстве стран. Эти изделия не подвергаются естественному разложению, при сжигании они выделяют ядовитые сернистые соединения, складирование их создает дополнительные трудности:

  • большие территории используются под свалки;
  • на свалках возникают гнездовые места для грызунов и вредных насекомых – возбудителей и переносчиков опасных заболеваний;
  • свалки старых шин являются пожароопасными областями;
  • невозможность использования ценного материала, содержащегося в изношенных шинах, для производства новых товаров;

Переработка покрышек использует самые различные технологические процессы – сжигание, термический и каталитический крекинг и пиролиз, регенерацию и разложение резины под воздействием кислорода, водорода и других химических реагентов, деполяризацию, измельчение и другие. 

Отличительной особенностью этих технологических процессов переработки является то, что они происходят при высокой температуре, требуют значительных энергозатрат, что приводит к существенному удорожанию получаемых продуктов и создает неблагоприятный экологический фон.

Криогенная технология измельчения покрышек основывается на одновременном использовании физических явлений, способствующих более эффективному протеканию процесса – ослабление связей между металлическим кордом и резиной за счет различия их коэффициентов термического расширения, что приводит к растрескиванию и частичному отделению резины от металла.

К достоинствам криогенной технологии переработки отходов относятся:

  1. высокая степень разделения отходов на компоненты;
  2. снижение энергозатрат на дробление;
  3. возможность получения высококачественных материалов;
  4. улучшение условий пожаробезопасности;
  5. улучшение условий труда и др.

В настоящее время для получения отрицательных температур в диапазоне от минус 60 до минус 110 ºС используется жидкий азот. Специфика применения жидкого азота заключается в том, что он имеет температуру минус 196 ºС, что приводит к значительным энергетическим затратам при его производстве и, соответственно, повышает стоимость переработки шин. Кроме того, применение жидкого азота требует организации надежного снабжения или наличия установки по его производству.

Указанные недостатки ограничили широкое применение криогенной технологии переработки, несмотря на высокую технологическую эффективность.

Фирма «Турботехмаш» имеет опыт создания установок по переработке изношенных шин с воздушными турбохолодильными машинами российского производства. Они являются самыми эффективными в диапазоне температур от минус 60ºС до минус 110ºС и позволяют снизить себестоимость получения холода в 3-4 раза, а удельные энергозатраты – в 2-3 раза по сравнению с применением жидкого азота.

Для проведения процесса низкотемпературного дробления требуется перевести продукт в хрупкое состояние, которое наступает в зависимости от сорта резины при разных значениях в указанном диапазоне температур.

Экологически чистая технологическая линия переработки изношенных шин с применением низкотемпературного охлаждения обеспечивает получение высококачественной резиновой крошки. Результаты испытаний показали, что дробление при низких температурах значительно уменьшает энергозатраты на дробление, улучшает отделение металла и текстиля от резины, повышает выход резиновой крошки.

Технологическая схема низкотемпературной переработки  
изношенных шин и отходов РТИ 

  1. Машина для вырезки бортов, 2шт. Гремания
  2. Дробилка двухвалковая ножевая. Германия
  3. Дробилка роторная ножевая. Германия
  4. Сепаратор магнитный 2шт. Украина
  5. Сепаратор воздушный. Украина
  6. Генератор холода. Россия
  7. Холодильная камера. Россия
  1. Молотковая дробилка США
  2. Отделитель текстиля. Украина
  3. Электросепаратор. Украина
  4. Вибросито. Россия
  5. Бункер хранения готового продукта. Россия
  6. Машина фасовочная . Россия


 

В установке используется экологически чистый генератор холода, не требующий вредных хладагентов аммиака и фреона. Оборудование линии отличается компактностью и позволяет получить крошку со следующими размерами:

0,5 – 0,65 мм - 50 %

0,65 – 0,8 мм - 15 %

0,8 – 1,2 мм - 15 %

1,5 – 2,5 мм - 10 %

2,5 – 3,5 мм - 10 %

При потребности Заказчика для получения резинового порошка более мелких фракций устанавливается дополнительное оборудование (диспергатор или дисковая мельница)

Принцип работы установки очень прост.

Изношенные шины поступают в узел грубого дробления, где вначале на станке удаляется бортовое кольцо. Затем шина попадает в измельчитель (шредер), где разрезается на крупные куски и направляется в роторную дробилку. Там происходит измельчение шины с последующим удалением металлокорда на магнитном сепараторе, и пыли и текстиля на аэросепараторе. 

Далее шины поступают в низкотемпературный модуль, состоящий из холодильной камеры, генератора холода, молотковой дробилки. После дробления полученная резиновая крошка поступает в блок тонкой очистки, а затем в бункерную систему накопления и затаривания.

Предлагаемая технологическая линия позволяет перерабатывать шины как с текстильным, так и с металлическим кордом. Выход материала следующий:

  • резиновая крошка - 65 %
  • корд текстильный - 17 %
  • металл - 17 %
  • отходы - 1 %

Также следует отметить высокую степень очистки: от металла – 0,01%, от текстиля – 0,1%.

 

2. Расчетная часть.

 

2.1.Технический расчет  основного аппарата.

 

Производительность линии по исходному продукту, кг/час 1500

Потребляемая электроэнергия, квт/час 450

Производственная площадь (без складских помещений), кв.м 350

Численность обслуживающего персонала, чел. 10

Температура охлаждения резины, С минус 80-90

 

2.2. Расчет вспомогательного  оборудования.

 

Метантенки

6.347. Метантенки следует применять для анаэробного сбраживания осадков городских сточных вод с целью стабилизации и получения метансодержащего газа брожения, при этом необходимо учитывать состав осадка, наличие веществ, тормозящих процесс сбраживания и влияющих на выход газа.

Совместно с канализационными осадками допускается подача в метантенки других сбраживаемых органических веществ после их дробления (домового мусора, отбросов с решеток, производственных отходов органического происхождения и т. п.).

Информация о работе Переработка отходов на основе резины