Автор работы: Пользователь скрыл имя, 08 Декабря 2013 в 14:07, курсовая работа
Производство текстиля и изделий из него (одежда, обувь, головные уборы, предметы домашнего быта и др.) является одной из самых древних технологий, наряду с медициной, сельским хозяйством, технологией приготовления пищи, домостроительством. Эти технологии на все времена, их результаты жизненно необходимы и востребованы всеми и каждодневно. Поэтому эти исключительно мирные области знания и практической деятельности человека развивались и совершенствовались синхронно с развитием цивилизации и прежде всего фундаментальных и прикладных наук, реализуя их идеи и методы быстро и эффективно
ВВЕДЕНИЕ 4
1. РОЛЬ ХИМИИ В ХИМИЧЕСКОЙ ТЕХНОЛОГИИ ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ 6
1.1 Подготовка текстильных материалов 6
1.2 Колорирование текстильных материалов. 7
1.3 Заключительная отделка текстильных материалов. 10
1.3.1 Аппретирование тканей 12
2. СОВРЕМЕННОЕ СОСТОЯНИЕ ОТДЕЛКИ ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ С ПРИМЕНЕНИЕМ ПОЛИМЕРОВ. 15
2.1 Основные положения теории отделки текстильных материалов с применением высокомолекулярных соединений 15
2.2 Проблемы, возникающие при применении предконденсатов термореактивных смол и их решение 21
2.2.1 Ухудшение механических свойств материалов 21
2.2.2 Выделение формальдегида 23
ЗАКЛЮЧЕНИЕ 28
СПИСОК ЛИТЕРАТУРЫ 29
Для повышения устойчивости шерстяных изделий к смятию традиционно применяются предконденсаты в смеси со слабыми восстановителями. В процессе сушки при температуре 100°С и термообработки при 120°С под действием восстановителей происходят процессы перестройки системы поперечных связей в кератине, смолообразования и дополнительной сшивки предконденсата с кератином в присутствии низкотемпературного катализатора (буры). В результате такой обработки угол восстановлении после смятия возрастает в 1,5-2 раза. При этом снижается свойлачиваемость и усадка, возрастает устойчивость к истиранию. Кроме смолообразующих предконденсатов для придания малосминаемости и формоустойчивости шерстяным изделиям используются также готовые полимеры, например, полиуретаны или эпоксидные смолы. Для снижения свойлачиваемости тканей можно использовать их хлорирование с последующим пропитыванием водными растворами продуктов взаимодействия полиамида с эпихлоргидрином, фиксация которых на шерстяном волокне происходит в процессе сушки и термообработки. С другой стороны известно, что хлорины загрязняют сточные воды, поэтому некоторые исследователи [15,16] предлагают заменить химическую и биологическую обработку - плазменной, оказывающей стерилизующее действие и снижающей свойлачиваемость шерстяных тканей.
Традиционная заключительная отделка ткани из шелка имеет сходство с отделкой искусственных целлюлозных волокон и предполагает обработку аминоформальдегидными смолами по плюсовочно–термофиксационному способу с промежуточной сушкой (привес смолы 10%, температура термообработки 135°С, время 3 мин). Такая отделка в основном увеличивает суммарный угол восстановления в сухом состоянии. Однако, при использовании глиоксалевых смол и поликарбоновых кислот глубина цвета образцов, окрашенных кислотными и прямыми красителями, снижается.
Операции пропитки ткани предконденсатами синтетических смол часто совмещают с процессом их умягчения и придания дополнительных свойств, например, гидрофобности и грязеотталкивания. Как уже отмечалось выше, соответствующими добавками в пропиточную ванну можно снизить ослабление прочности ткани и повысить ее устойчивость к истиранию. Для этих целей в качестве самостоятельной отделки используют мягчители на основе различных высокомолекулярных соединении и ПАВ. Например, отделка силиконовыми и фторсодержащими полимерами [17] позволяет получить материалы с повышенной устойчивостью к загрязнениям и истиранию, что очень важно, для тканей из натуральных, искусственных и смешанных волокон верхнего одежного ассортимента. Ткани, обработанные препаратами, содержащими микросиликоновые эмульсии Softener 8600 (ф. DOW Corning), Fluftone SWS (ф. Ароlо Сhеmical), Cinsil MW (ф. Stockhausen) и др. приобретают повышенную устойчивость к многократным стиркам и химическим чисткам. В данном случае, улучшение потребительских свойств происходит за счет образования непрерывной, тонкой упругой пленки отделочного вещества, сглаживающей поверхность волокон, предохраняющей ее от истирания, попадания внутрь волокна влаги и упрочняющей окраску с сохранением пористости и воздухопроницаемости.
2.2 Проблемы, возникающие при применении
предконденсатов
2.2.1 Ухудшение механических
Широкое применение предконденсатов термореактивных смол обусловлено высоким эффектом несминаемости и малоусадочности, достигаемым после аппретирования. Однако, с увеличением количества препарата наносимого на ткань, вследствие фиксации структуры волокон и повышении ее жесткости, происходит заметное ухудшение механических свойств материалов – понижается их разрывная нагрузка и растяжимость, устойчивость к истиранию, многократному растяжению и изгибу. При нанесении 7-8 % синтетических смол от массы сухой ткани (отделка не требующая глажения) эффект несминаемости, оцениваемый по сумме углов раскрытия, составляет 220-250° против 70-100° до обработки ткани, а потери прочности на разрыв хлопчатобумажных и льняных тканей 30-40 %, при уменьшении содержания смолы на ткани до 5 % (легкое глажение) - 200-220°, а потери прочности на разрыв 20-35 %. При содержании до 4 % (прочность на разрыв 15-30 %) ткань уже не приобретает эффекта «стирай-носи», а становится только несминаемой и малоусадочной.
Устранить этот недостаток можно путем введения в отделочные композиции мягчителей на основе термопластичных полимеров, силиконов или ПАВ, что способствуют образованию с предконденсатами смол внутри волокна менее жестких и напряженных эластических структур. В результате, уменьшается жесткость обработанной ткани и улучшается рад других показателей качества: устойчивость к истиранию, разрывная прочность, добротность, наполненность тканей. В многочисленных работах [18, 19, 20] предлагается вводить в отделочный раствор этиленовые или силиконовые полимеры. Из отечественных, применяются препараты на основе полиэтиленовой эмульсии и ГКЖ-94, а из зарубежных – мягчители, разработанные фирмами ВАSF, Неnkel, DOW Соrning (8803 Softener), Ivax. Силиконы в качестве мягчителей позволяют не только снизить потери механической прочности в 2-2,5 раза, но и придать тканям эффект водо- и грязеотталкивания, усилить эффект малоусадочности и несминаемости на 25-35 градусов, приданный смолами.
Устранить механические потери прочности
можно усовершенствованием
Исследованиями ряда авторов [27] было установлено, что при переходе от традиционных фиксирующих средств (горячий воздух, перегретый водяной пар) к водно-органической фактор эффективности отделки, характеризующийся как отношение изменения суммарных углов раскрытия складки к снижению разрывной нагрузки ткани увеличивается в 1,5-2 раза, что объясняеться изменением характера «сшивки» полимеров. При фиксации отделочных препаратов в среде перегретых паров азеотропа в сравнении с горячим воздухом количество образующихся поперечных связей снижается, а их длина возрастает, упругие свойства материала при этом увеличиваются.
Существенно улучшить физико-механические
показатели аппретированной ткани
позволяет предварительная
2.2.2 Выделение формальдегида
Формальдегид – бесцветный газ
с резким раздражающим запахом. Тпл=118°С,
Ткип=19,2°С, хорошо растворим в воде,
спиртах [30]. В природе он образуется в
атмосфере под действием ультрафиолетового
излучения и из атмосферы усваивается
живыми организмами. В промышленности
формальдегид получают окислением метилового
спирта или метана кислородом. Формальдегид
образуется при неполном сгорании органических
веществ (бензина, нефти, угля), в том числе
содержится в сигаретном дыме.
Формальдегид токсичен, действует на
организм как: раздражающий газ, вызывает
дегенеративные процессы в паренхиматозных
органах, сенсибилизирует кожу [31]. Есть
указания о сильном действии формальдегида
на центральную нервную систему. Свободный
формальдегид инактивирует ряд ферментов
в органах и тканях, угнетает синтез нуклеиновых
кислот, нарушает обмен витамина С, обладает
мутагенными свойствами.
На текстильном предприятии опасность воздействия паров формальдегида при работе со смолами возникает на следующих переходах: в процессе приготовления отделочных составов и их нанесения, при проведении термообработки и при хранении обработанных полотен.
Существуют международные и
национальные нормы содержания формальдегида
в воздухе, в рабочих помещениях,
в атмосфере, в сточных водах
и в текстильных материалах.
Таблица 1 Допустимые концентрации свободного формальдегида (Ф) в материалах бытового назначения
Группа I содержание Ф до 1000 мкг/г |
Группа II содержание Ф до 300 мкг/г |
Группа III содержание Ф до 75 мкг/г |
Группа IV без содержания Ф |
текстильные материалы (МТ) для изделий пальтово-костюмного ассортимента |
МТ для изделий платьево-блузоч |
МТ для нательного и постельного белья, в том числе для детей всех возрастных групп, кроме детей в возрасте до 1 года |
МТ для детей в возрасте до 1 года |
Большинство традиционных обработок смолосодержащими препаратами не удовлетворяют этим условиям. Отщепление формальдегида, в большей или в меньшей степени, происходит за счет гидролитического разрушения смол в зависимости от типа предконденсата и катализатора.
С учетом этого, следует выделить три направления решения проблемы, связанной с выделением свободного формальдегида при аппретировании и хранении тканей. Первое направление связало с обеспечением оптимальных условий конденсации с образованием минимального числа свободных метильных групп и эфирных мостиков, при образовании которых может выделяться формальдегид, а также свободного не прореагировавшего формальдегида. Например, использование эффективного катализатора, ускоряющего реакцию взаимодействия отделочного препарата с целлюлозой, позволяет снизить концентрацию предконденсата смолы на 20-40 % [33].
Введение в состав пропиточного раствора компонентов, способных связывать формальдегид в процессе выделения в два и более раз снижает загазованность парами формальдегида рабочей зоны цехов и уменьшает его содержание на ткани в процессе хранения. Действие применяемых для этих целей ингибиторов, таких как бисульфит натрия, мочевина, дициандиамид, дитионит натрия [34, 35] зависит от вида использованного при отделке катализатора.
Второе направление связано со снижением на 30-50 % концентрации смолообразующих компонентов отделочных композиций за счет их совместного применения с такими препаратами как гидроксиламин [36], силиконовая эмульсия [37, 38] и др. Эти химические вещества в определенном соотношении позволяют восполнить недостаток предконденсата при несминаемой отделке ткани, но не способны полностью его заменить.
Одним из наиболее радикальных способов
перехода к заключительной отделке
с малым содержанием
Применение эффективного катализатора обеспечивает снижение температуры фиксации отделочных препаратов и высокое качество отделки тканей с низким содержанием на ней свободного формальдегида (таблица 2).
Таблица 2 Сравнительные технические результаты малосминаемой отделки вискозных штапельных тканей.
Наименование отделочного |
Наименование катализатора |
Параметры фиксации |
Суммарный угол раскрытия складки, град |
Содержание свободного формальде- гида на ткани, мкг/г | |
темпе- ратура, °С |
время, мин | ||||
Карбамол ЦЭМ |
Хлорид аммония |
150 |
4,0 |
248 |
2184 |
Карбамол 2М |
Хлорид аммония |
160 |
3,5 |
246 |
773 |
Персульфат аммония |
150 |
4,0 |
272 |
199 | |
Карбамол ГЛ |
Хлорид аммония |
150 |
4,0 |
244 |
1173 |
Отексид Д2 |
Хлорид аммония |
160 |
3,5 |
237 |
102 |
Персульфат аммония |
150 |
4,0 |
269 |
99 | |
Карбамол МТ |
Хлорид аммония |
160 |
4,0 |
227 |
261 |
Персульфат аммония |
140 |
4,0 |
241 |
90 | |
Карбамол МТ2 |
Хлорид аммония |
160 |
4,0 |
225 |
760 |
Так же следует отметить, что высокую эффективность в качестве бесформальдегидных поперечно-сшивающих препаратов проявили себя такие вещества как глиоксаль; продукты взаимодействия глиоксаля с мочевиной, глиоксаля с ацетамидом [42, 43, 44], глиоксаля и диэтиленгликоля [45]; поликарбоновые кислоты с 3 и более карбоксильными группами; ненасыщенные дикарбоновые малеиновая и итаконовая кислоты и их смеси; 1,2,3-пропантрикарбоксильная с лимонной кислотой, а также реакционноспособные силиконы, содержащие алкокси- и амино - группы [46]. Основным недостатком глиоксаля и карбоновых кислот, используемых в качестве препаратов для малосминаемой отделки является то, что применение их для отделки окрашенных прямыми, активными, кубовыми и дисперсными красителями тканей, приводит к изменению цвета и снижению прочности окраски.
ЗАКЛЮЧЕНИЕ
Мы живем в век химии. Мы контактируем с продукцией химической промышленности постоянно, не зависимо от того, что мы делаем: принимаем ли пищу (всевозможные пищевые добавки), читаем ли книгу (типографские краски), принимаем ли душ (гели для душа, шампуни, бальзамы-ополаскиватели – чего только не придумали для этой простой процедуры химики), но единственное, что окружает нас 24 часа в сутки – это ткани.
Информация о работе Полимерные составы для обработки текстильных материалов