Автор работы: Пользователь скрыл имя, 24 Апреля 2014 в 12:30, дипломная работа
Целью данной магистерской работы является разработка прецизионного, термостабильного источника питания, входящего в состав автоматизированной системы управления технологическим процессом изготовления деталей электронных аппаратов
Перечень условных обозначений, символов, единиц, сокращений и терминов…………………………………………………………………...
7
Введение…………………………………………………………………...
8
1. Обзор литературы по теме исследования……………………………..
12
2. Теоретическая часть……………………………………………………
27
2.1 Общие сведения об источниках питания. Виды источников питания ……………………………………………………………………
27
2.2 Критерии выбора источника питания ……………….………………
48
2.3 Структурная схема разрабатываемого источника питания ………..
59
2.4 Описание принципа функционирования устройства …………...….
61
2.5 Разработка конструкции изделия...…………………………………..
62
3 Экспериментальная часть…………………………………………….
70
3.1 Программа испытаний……………………………………………...
70
3.2 Методика испытаний……………………………………………….
70
3.3 Условия и порядок проведения испытаний…………………………
71
3.4 Материально-техническое и метрологическое обеспечение испытаний………………………………………………………………….
72
3.5 Обработка результатов испытаний……………………………….….
73
Выводы………………………………………………………………….....
75
Перечень ссылок………………………………………………………......
76
Средний уровень – уровень производственного участка. Его функции:
Верхний уровень в системе автоматизации занимает уровень управления. На этом уровне осуществляется контроль за производством продукции. Этот процесс включает в себя сбор поступающих с производственных участков данных, их накопление, обработку и выдачу руководящих директив нижним ступеням. Атрибутом этого уровня является центр управления производством, который может состоять из трех взаимопроникающих частей:
1) операторской части,
2) системы подготовки отчетов,
3) системы анализа тенденций.
Операторская часть отвечает за связь между оператором и процессом на уровне управления. Она выдает информацию о процессе и позволяет в случае необходимости вмешательство ход автоматического управления. Обеспечивает диалог между системой и операторами.
Система подготовки отчетов выводит на экраны, принтеры, в архивы и т.д. информацию о технологических параметрах с указанием точного времени измерения, выдает данные о материальном и энергетическом балансе и др.
Система анализа тенденций дает оператору возможность наблюдения за технологическим параметрами и делать соответствующие выводы.
На верхнем уровне АСУ ТП размещены мощные компьютеры, выполняющие функции серверов баз данных и рабочих станций и обеспечивающие анализ и хранение всей поступившей информации за любой заданный интервал времени, а также визуализацию информации и взаимодействие с оператором. Основой программного обеспечения верхнего уровня являются пакеты SCADA (Supervisory Control And Data Acquisition – системы управления и доступа к данным) [2, 7, 15].
Рассмотрим функциональную структуру автоматизированной системой управления технологическим процессом. Функциональная структура АСУ ТП представляет собой многоуровневую иерархическую структуру (рисунок 1.2).
Рисунок 1.2 – Функциональная структура АСУ ТП
Нижний уровень представляет технологический процесс и технические средства получения информации (Д) и реализации управляющих воздействий (ИМ).
«Защита» – подсистема комплексных средств автоматической защиты и блокировок.
«Стабилизация» – подсистема выработки управляющих сигналов и средств автоматического регулирования технологических параметров.
«Оптимизация» – подсистема расчета оптимальных параметров технологического процесса в соответствии с принятыми критерием и целями функционирования технологического процесса.
«Идентификация» – подсистема расчета параметров математических моделей технологического процесса.
«Координация» – подсистема расчета технико-экономических показателей (ТЭП), ввода в систему директив и указаний руководства предприятия и передача информации в другие системы управления предприятием для общей координации управления предприятием.
АСУ ТП – это человеко-машинная система. Функции системы могут быть реализованы в двух режимах ее работы:
Структурная схема взаимодействия оператора и системы управления представлена на рисунке 1.3.
АСР – автоматическая система регулирования,
СОИ – система отображения информации,
ДУ – органы дистанционного управления.
Рисунок 1.3 – Структурная схема взаимодействия оператора и системы управления
В системе несколько контуров управления: I контур –автоматизированное; II контур – автоматическое; III контур – система, в которой задание изменяет оператор, а управляет технологическим процессом АСР.
Таким образом в системах управления происходит переработка информации о состоянии объекта управления, выработка управляющих воздействий и передача ее в виде сигналов от объекта в управляющую систему и от управляющей системы к объекту управления [4, 5, 31].
Теперь перейдём к рассмотрению сущности, видам и принципам функционирования источников питания.
Для работы большинства электронных устройств необходимо наличие одного или нескольких источников питания (ИП) постоянного тока.
Все ИП можно разделить на две группы: источники первичного элек-тропитания и источники вторичного электропитания. РЭА может иметь в своем составе: ИП первой группы; ИП второй группы; ИП первой и второй групп одновременно.
Источники первичного электропитания. К данной группе ИП относятся:
1) химические источники тока (гальванические элементы, батареи и аккумуляторы);
2) термобатареи;
3) термоэлектронные преобразователи;
4) фотоэлектрические преобразователи (солнечные батареи);
5) топливные элементы;
6) биохимические источники тока;
7) атомные элементы;
8) электромашинные генераторы.
Химические источники тока (ХИТ) широко используются для питания маломощных устройств и аппаратуры, требующей автономного питания. Батареи и аккумуляторы являются также вспомогательными и (или) резервными источниками энергии в устройствах, питающихся от сети переменного тока. Выходное напряжение таких источников практически не содержит переменной составляющей (пульсаций), но в значительной степени зависит от величины тока, отдаваемого в нагрузку, и степени разряда. Поэтому в устройствах, критичных к напряжению питания, химические источники тока используются совместно со стабилизаторами напряжения.
Термобатареи состоят из последовательно соединенных термопар. Термобатареи используются в качестве ИП малой мощности, например для питания радиоприемников. В простейшем виде термоэлектрический генератор представляет собой батарею термопар, у которых одни концы спаев нагреваются, а другие имеют достаточно низкую температуру, благодаря чему создается термо-ЭДС и во внешней цепи протекает ток. Каждая термопара может состоять из двух разнородных полупроводников или из проводника и полупроводника.
Большая теплопроводность металлических термопар не позволяет создавать значительную разность температур спаев, а следовательно, не дает возможность получить большую термо-ЭДС. Лучшие результаты дает использование в термогенераторах полупроводниковых термопар, или комбинированных, состоящих из проводника и полупроводника. В термопаре, состоящей из полупроводников с n- и p- проводимостями, при нагревании спая количество электронов в полупроводнике n-типа и число дырок в полупроводнике p-типа увеличивается. Электроны и дырки вследствие диффузии в полупроводниках движутся от горячего слоя термопары к холодному. Перемещение дырок приводит к тому, что горячий конец полупроводника p-типа заряжается отрицательно, а холод-ный конец – положительно. В полупроводнике n-типа электроны, переходя от горячего конца к холодному, так же как, и в металле, заряжают горячий конец положительно, а холодный конец – отрицательно. Термо-ЭДС полу-проводниковой термопары значительно больше термо-ЭДС металлической пары.
Термоэлектронные преобразователи представляют собой вакуумные или газовые приборы с твердыми нагреваемыми катодами. Преобразование тепловой энергии в электрическую осуществляется за счет использования термоэлектронной эмиссии нагретых тел. Эмитированные катодом электроны движутся к аноду под действием разности температур. Для обеспечения этой разности температур необходимо охлаждение анода. В зависимости от температуры нагрева катода термоэлектронные преобразователи делятся на низкотемпературные (1200 °С – 1600 °С) и среднетемпературные (1900 °С – 2000 °С). У среднетемпературных преобра-зователей КПД достигает 20%, что более чем в 2 раза превышает КПД термобатарей.
Фотоэлектрические преобразователи осуществляют преобразование тепловой и световой энергии солнечных лучей в электрическую. Солнечные батареи представляют собой ряд фотоэлементов, соединенных между собой определенным образом. Фотоэлектрические преобразователи используются в качестве источника электрической энергии для питания маломощной радиоаппаратуры, а также для питания радиотехнической и телеметрической аппаратуры на спутниках Земли и на автоматических межпланетных станциях. Солнечные батареи просты, имеют очень большой срок службы и работают в большом диапазоне изменения температур.
Топливные элементы осуществляют непосредственное преобразование энергии химических реакций в электрическую энергию. Действие таких элементов основано на электрическом окислении вещества (топлива), которое подобно реакции горения топлива. Однако в отличие от горения в этих элементах окисление топлива и восстановление кислорода происходит на разных электродах. Поэтому энергия выделяется в нагрузке без промежуточного преобразования в энергию иного вида, что обеспечивает высокий КПД преобразователя. В топливных элементах химическая реакция протекает при взаимодействии активных веществ, которые в твердом, жидком или газообразном состоянии непрерывно поступают к электродам.
Биохимические источники тока можно рассматривать как разновидность топливных элементов, так как в них протекают подобные окислительно-восстановительные процессы. Отличие биохимических элементов от топливных состоит в том, что активные вещества (или одно из них) создаются с помощью бактерий или ферментов из различных углеводов и углеродов.
Атомные элементы применяются для питания маломощных устройств. Конструкция таких ИП различна в зависимости от принципа их действия. В элементах, использующих β-излучение, на внутреннем электроде размещается радиоактивный изотоп стронция 90. Вторым электродом является металлическая оболочка. Между электродами находится твердый диэлектрик или вакуум. Под действием β-лучей на электродах создаются заряды. Напряжение в таких элементах может достигать нескольких киловольт, а внутреннее сопротивление очень велико (порядка 1013 Ом). Разрядный ток не превышает одного миллиампера.
Достоинством таких элементов является очень большой срок службы. В элементах, использующих контактную разность потенциалов, применяются электроды в виде пластинок из различных материалов. Одна из пластин покрыта двуокисью свинца, другая изготовлена из алюминия. Между электродами находится смесь инертного газа и радиоактивного трития. Под действием излучения происходит образование ионных пар.
Напряжение между электродами определяется контактной разностью потенциалов. Под действием этого напряжения положительно и отрицательно заряженные ионы перемещаются к электродам. В элементах с облучаемыми полупроводниками радиоактивное вещество наносится на поверхность полупроводника (кремния). Излучаемые электроны, имеющие большую скорость, выбивают из атомов полупроводника большое количество электронов. В результате односторонней проводимости между полупроводником и коллектором, приваренным к нему, возникает ЭДС величиной нескольких десятых долей вольта. Внутреннее сопротивление таких элементов 100 Ом – 1000 Ом, КПД может достигать нескольких процентов. Недостатком является малый срок службы вследствие разрушения полупроводника под действием радиации.
Электромашинные генераторы преобразуют механическую энергию в электрическую. Они делятся на генераторы постоянного и переменного тока. Машины переменного тока могут быть как однофазными, так и мно-гофазными. Наиболее широкое применение нашли трехфазные синхронные и асинхронные генераторы, действие которых основано на использовании вращающегося магнитного поля. В синхронных машинах процесс преобразования энергии происходит при синхронной частоте, то есть когда частота вращения ротора равна частоте вращения магнитного поля.
В асинхронных машинах процесс преобразования энергии происходит при асинхронной частоте, то есть когда частота вращения ротора отличается от частоты вращения магнитного поля [6, 7, 17].
Рассмотрим классификацию источников вторичного электропитания радиоэлектронной аппаратуры.
Источники вторичного электропитания радиоэлектронной аппаратуры (ИВЭ) могут быть классифицированы по следующим параметрам:
По типу питающей сети:
По напряжению на нагрузке:
Информация о работе Прецизионный термостабильный источник питания для АСУ ТП