Реферат по дисциплине "Материаловедение и технология конструкционных материалов"

Автор работы: Пользователь скрыл имя, 21 Октября 2014 в 19:14, реферат

Краткое описание

Углеродистые стали.
Сплавы на основе меди.
Ковкий и серый чугун.

Вложенные файлы: 1 файл

Реферат по матерьяловеденья.doc

— 57.00 Кб (Скачать файл)

 

Областное государственное образовательное учреждение среднего профессеонального образования «Новгородский агротехнический техником»

 

 

 

 

 Реферат

По дисциплине: Материаловедение и технология конструкционных материалов

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Выполнил:

Студент 3 курса

Группа: 3119

Данилов П. С.

Проверил:

 

 

 

Великий Новгород

2014 

 
Углеродистые стали 
 
 

 

 
Углеродистые стали разделяют на стали обыкновенного качества, качественные и высококачественные 
 
В зависимости от назначения и гарантируемых характеристик сталь обыкновенного качества согласно ГОСТ 380-71, разделяют на три группы А, Б, В, учитывающие поставки: 
 
сталь группы А – поставляют потребителям по механическим свойствам; 
 
сталь группы Б – по химическому составу;  
 
сталь группы В – с гарантированными механическими свойствами и химическим составом. 
 
Углеродистую сталь обыкновенного качества группы А изготовляют следующих марок: Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6, Ст7. Помере увеличения номера стали повышается содержание углерода, а также прочность и твердость, но снижается пластичность и ударная вязкость. 
 
Сталь группы Б изготовляют тех же марок, но перед маркой стали ставят букву Б (БСт0, БСт1кп). Сталь группы В изготовляют следующих марок: ВСт2, ВСт3, ВСт4 и ВСт5._| 
 
Стали обыкновенного качества применяют для строительных конструкций и неответственных деталей машин.  Если из этой стали изготовляют сварные строительные конструкции, то в ней ограничивается содержание углерода, серы, фосфора, азота и других примесей, ухудшающих качество сварки. 
 
Углеродистая конструкционная сталь обычного качества выпускается в виде проката — листов, уголков, балок, прутков и т. д. Углеродистые стали специального назначения имеют дополнительные индексы, например стали для мостовых конструкций — СТЗ мост.  
 
Как уже отмечалось в зависимости от степени раскисления сталь может быть кипящей, спокойной и полуспокойной. Кипящую сталь обозначают индексом «кп», спокойную «сп» и полуспокойную «пс». Спокойная сталь обладает более высокими показателями сопротивления динамическому нагружению и ударной вязкости. Буквы М (мартеновская) и Б (бессемеровская) в марках стали означают способ выплавки. Так, мартеновскую спокойную сталь обозначают МСт. 2сп, бессемеровскую кипящую — БСт. Зкп. 
 
Качественные конструкционные углеродистые стали в зависимости от содержания марганца разделяют на две группы (ГОСТ 1050—74):   
 
I группа — стали с нормальным содержанием марганца (0,5кп, 0,8кп,…, 20, 25,…, 85, где цифры показывают среднее содержание углерода в стали в сотых долях процента); 
 
II группа — стали с повышенным содержанием марганца (15Г, 20Г,... 
70Г, где буква Г означает, что сталь содержит 0,7—1,2% Мп). 
 
Содержание серы и фосфора должно быть не больше 0,04% (каждого).  
 
Малоуглеродистые стали 08кп и 05кп широко применяют в виде листов для штамповки различных деталей (кузова, фары и т. д.). 
 
Малоуглеродистые качественные стали 10, 15, 20, 25 применяют для сварных и клепаных конструкций, а также для деталей, подвергающихся цементации или цианированию (втулки, пальцы, шестерни, и т. д.). 
 
Среднеуглеродистые качественные стали 30, 35, 40, 45 и 50 хуже свариваются, чем стали, указанные выше. Стали 30, 35 и 40 используют для деталей, подвергающихся большим нагрузкам. Стали 45 и 50 применяют для изготовления деталей, также подвергающихся большим нагрузкам, но после нормализации (коленчатые валы автомобильного двигателя), а также для изготовления мелких деталей с последующей улучшающей термической обработкой. 
 
Высокоуглеродистые качественные стали 55,60, 65 и 70 применяют для изготовления пружин, рессор и зубчатых колес. Высокие эксплуатационные свойства достигаются закалкой с последующим отпуском в интервале 300—400° С. 
 
Инструментальные качественные углеродистые стали предназначены для изготовления режущего, мерительного и штамповочного инструмента небольших размеров. Марки этих сталей обозначаются так: буква У и цифры показывают содержание углерода в десятых долях процента (У7, У8, .... У13). 
 
Высококачественные стали содержат более низкое количество серы (до 0,02%) и фосфора (до 0,03%), имеют меньшее содержание неметаллических включений, обладают повышенными механическими свойствами

 

 

Сплавы на основе меди.

 

 

Медь (лат.Cuprum) - химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным медь была хорошо известна египтянам еще за 4000 лет до н.э.. Знакомство человечества с медью относится к более ранней эпохе, чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состаянии на поверхности земли, а с другой - сравнительной легкостью получения ее из соединений. Древняя Греция и Рим получали медь с острова Кипра (Cyprum),откуда и название ее Cuprum.

Медь особенно важна для электротехники. По электропроводности медь занимает второе место среди всех металлов, после серебра. Однако в наши дни во всем мире электрические провода, на которые раньше уходила почти половина выплавляемой меди, все чаще делают из аллюминия. Он хуже проводит ток, но легче и доступнее. Медь же, как и многие другие цветные металлы, становится все дефицитнее. Если в XIX в. медь добывалась из руд, где содержалось 6-9% этого элемента, то сейчас 5%-ные медные руды считаются очень богатыми, а промышленность многих стран перерабатывает руды, в которых всего 0,5% меди.

Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата медного купороса. В значительных количествах он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь совершенно необходима всему живому.

Сплавы латуней

Латунями называют сплавы меди с цинком. Кроме двухкомпонентных (простых) латуней, имеются многокомпонентные, которые содержат один или несколько лигирующих компонентов (Al, Ni, Fe, Mn и т.д.). практическое значение имеют медно-цинковые сплавы, с содержанием цинка до 45%, левая часть диаграммы которых представлена на рис. 1 а)

Рис 1. Диаграмма состояния системы медь - цинк (а) и механические свойства литой латуни в зависимости от содержания цинка (б)

В твердом состоянии медноцинковые сплавы образуют:

1) твердый б-раствор цинка  меди (типовой твердый раствор  замещения) при содержании до 39% Zn. Такой сплав обладает высокой  пластичностью и достаточно высокой прочностью;

2) твердый в-раствор на  базе соединения электронного  типа CuZn при содержании 45-49% Zn;

3) смесь б+в твердых  растворов.

Латуни, имеющие в структуре однофазный твердый б-раствор, хорошо поддаются обработке давлением в горячем и холодном состоянии, сварке, пайке и лужению.

Однофазный в-раствор при температуре примерно 453 ?С имеет упорядоченное расположение атомов меди и цинка и обозначается в'. Эта фаза, в отличие от в-фазы, является твердой и хрупкой. Обработке давлением она подвергается только в горячем состоянии.

Латуни, имеющие двухфазную структуру б+в также обладают низкой пластичностью и обрабатываются давлением только в горячем состоянии.

Все латуни имеют хорошие антикоррозийные свойства; в атмосферных условиях скорость коррозии составляет 0,0001-0,00075 мм/год.

Механические свойства латуней в зависимости от содержания цинка представлены на рис 1 б) Увеличение содержания цинка до 39% приводит к образованию при комнатной температуре б-фазы и сопровождается повышением прочности и пластичности. При дальнейшем увеличении содержания цинка образуются две фазы б+в', что приводит к интенсивному уменьшению пластичности с одновременным увеличением прочности. При переходе в однофазную область в' латунь становится весьма хрупкой, вследствие чего резко снижаются прочность и пластичность. Поэтому на практике используют латуни, содержащие не боее 42% Zn, т.е. одно- и двухфазные латуни.

Славы бронзы

Бронзами называют сплавы меди с оловом, алюминием, марганцем, кремнием, берилием и другими элементами, которые являются основными легирующими элементами.

Бронзы делят на две основные группы:

1) Оловянистые, в которых  основным легирующим элементом является олово;

2) Специальные, в которых  основными элементами являются  алюминий, марганец, кремний, берилий  и т.д.

Название специальных бронз дается по основному легирующему элементу: алюминиевые, марганцовистые, кремнистые и т.п.

Бронзы обозначают буквами «Бр» и первыми буквами основных легирующих элементов, за которыми следуют цифры, показывающие их процентное содержание. Например, БрОФ6,5-0,4 означает, что бронза оловянофосфористая с содержанием 6,5% Sn и 0,4% P, остальное медь; БрА7 - содержит 7% Al, остальное медь и т.д.

Рис 2. Диаграмма состояния системы медь - олово (а) и механические свойства литой бронзы в зависимости от содержания олова (б)

Весьма широкое применение получили технические оловянистые бронзы с содержание 10-12% Sn и реже до 20-22% Sn. Из диаграммы состояния медь - олово рис 2 а) (левая часть полной диаграммы) видно, что меднооловянистые сплавы при 800-700 ?С образуют:

1) твердый б-раствор олова  в меди (при содержании до 13,5% Sn);

2) сесь двух фаз б+в (при содержании 13,5-22% Sn).

В отличие от латуней в бронзе в-фаза существует только при высоких температурах и на диаграмме имеется горизонтальная линия между б+в-фазой, в-фазой и б+д-фазой. Это означает что такие материалы можно подвергать закалке и старению.

При медленном охлаждении с 588 ?С кристаллы в-фазы претерпевают эквивалентный распад с образованием смеси б-фазы и -фазы, а при 520 ?С кристаллы твердого раствора -фазы распадаются на смесь фаз б и д. В свою очередь при 350 ?С д-фаза распадается на твердый б-раствор и е-фазу (соединение Cu3Sn). В результате медленного охлаждения при комнатной температуре микроструктура оловянистой бронзы состоит из смеси фаз б+е. При реальных условиях охлаждения последнее превращение не успевает произойти и бронза состоит из фаз б+д (соединение Cu31Sn8)

Оловянистые бронзы по технологическому признаку разделяют на литейные и деформируемые.

 

Ковкий и серый чугун.

 

Ковкий чугун получают путем отжига белого чугуна определенного химического состава, отличающегося пониженным содержанием графитизирующих элементов (2,4—2,9 % С и 1,0—1,6 % Si), так как в литом состоянии необходимо получить полностью отбеленный чугун по всему сечению отливки, что обеспечивает формирование хлопьевидного графита в процессе отжига. 
 
Механические свойства и рекомендуемый химический состав ковкого чугуна регламентирует ГОСТ 1215-79. Ковкие чугуны маркируют буквами «К» — ковкий, «Ч» _ Чугун и цифрами. Первая группа цифр показывает предел прочности чугуна при растяжении, вторая — относительное его удлинение при разрыве. Например, КЧ 33-8 означает: ковкий чугун с пределом прочности при растяжении 33 кг/мм2(330 МПа) и относительным удлинением при разрыве 8 %. 
 
Различают черносердечный ковкий чугун, получаемый в результате графитизирующего отжига, и белосердечный, получаемый путем обезуглероживающего отжига в окислительной среде. В России применяют только черносердечный ковкий чугун. Матрица чугуна может быть перлитной, ферритной, или перлитно-ферритной в зависимости от режима отжига. 
 
Для ускорения процесса отжига КЧ используют различные приемы: повышают температуру выдержки в период П2, модифицируют и микролегируют чугун присадками алюминия, бора, титана или висмута. Все эти приемы способствуют увеличению числа центров кристаллизации, снижению устойчивости цементита. 
 
Ковкий чугун используют для изготовления мелких и средних тонкостенных отливок ответственного назначения, работающих в условиях динамических знакопеременных нагрузок (детали приводных механизмов, коробок передач,  
 
тормозных колодок, шестерен, ступиц и т. п.). Однако ковкий чугун — малоперспективный материал из-за сложной технологии получения и длительности производственного цикла изготовления деталей из него.

 

Серый чугун

 
Серый чугун — это сплав системы Fe-C-Si, содержащий в качестве примесей марганец, фосфор, серу. Углерод в серых чугунах преимущественно находится в виде графита пластинчатой формы. 
 
Структура отливок определяется химическим составом чугуна и технологическими особенностями его термообработки. Механические свойства серого чугуна зависят от свойств металлической матрицы, формы и размеров графитовых включений. Свойства металлической матрицы чугунов близки к свойствам стали. Графит, имеющий невысокую прочность, снижает прочность чугуна. Чем меньше графитовых включений и выше их дисперсность, тем больше прочность чугуна. Графитовые включения вызывают уменьшение предела прочности чугуна при растяжении. На прочность при сжатии и твердость чугуна частицы графита практически не оказывают влияния. Свойство графита образовывать смазочные пленки обусловливает снижение коэффициента трения и увеличение износостойкости изделий из серого чугуна. Графит улучшает обрабатываемость резанием.

 

Модифицирование серого чугуна магнием, а затем ферросилицием позволяет получать магниевый чугун (СМЧ), обладающий прочностью литой стали и высокими литейными свойствами серого чугуна. Из него изготовляют детали, подвергаемые ударам, воздействию переменных напряжений и интенсивному износу, например коленчатые валы легковых автомобилей.


Информация о работе Реферат по дисциплине "Материаловедение и технология конструкционных материалов"