Способы защиты от вибрации и шума

Автор работы: Пользователь скрыл имя, 06 Октября 2015 в 17:44, курсовая работа

Краткое описание

Технология WDM была предложена в 1980 года Дж. П. Лауде (компания Instruments SA) и сначала её применение ограничивалось сферой междугородной телефонной связи и телевещания. Перспективы её распространения стали более радужными после кардинального изменения ситуации на американском рынке телекоммуникационных услуг связи (в середине 90-х гг.). Прежде линии связи использовались главным образом для транспортировки голоса, теперь же значительную часть передаваемого по ним трафика составляют данные, объем которых растет опережающими темпами. Особенно быстро, на 80-100% в год, увеличивается объем трафика Internet, причем этот процесс приобрел труднопрогнозируемый характер.

Вложенные файлы: 1 файл

4 ДП.docx

— 486.73 Кб (Скачать файл)

 

 

Аналогично можно получить производные таблицы как при использовании большего шага 0,4 ТГц (400 ГГц, или 3,2 нм), 0,6 ТГц (600 ГГц, или 4,8 нм) и 1,0 ТГц (1000 ГГц, или 8,0 нм).

 

Таблица 2.2 Стандартный канальный план при разносе каналов на 200 ГГц

 

 

f ТГц

196,1

195,9

195,7

195,5

195,3

...

191,9

191,7

191,5

191,3

191,1

 

l  нм

1528,77

1530,33

1531,90

1533,47

1535,04

...

1562,23

1563,86

1565,50

1567,13

1568,77


 

 

Ниже приведена таблица соответствия канальных планов оборудования WDM семи ведущих производителей канальному плану ITU-T по состоянию на 1.10.98, из которой видно, что все они соответствуют этому плану, так как не используют шага меньше 100 МГц. Кроме того, оказывается, что весь стандартный диапазон Dст поделен на два поддиапазона: S (Short band, использующий более короткие длины волн) и L (Long band, использующий более длинные волны) – в обозначениях, используемых компанией Alcatel. Выбор того или иного поддиапазона диктуется достижимой неравномерностью АВХ в этом поддиапазоне. Ясно, что более предпочтителен в этом смысле поддиапазон L, позволяющий получить хорошую неравномерность даже со стандартными ОУ без специального выравнивания.

Упомянутая таблица может быть представлена в следующем расширенном виде:

Таблица 2.3 Практика использования стандартного канального плана

 

 

Компания

 

Alcatel

Bellcore

Cambrian

Ciena

IBM

Lucent

MCI

Nortel

Osicom

Pirelli

Шаг, ТГц

0,2; 0,1

0,2

0,2; 0,1

0,1; 0,05

0,4

0,1

0,4; 0,1

0,1

0,2; 0,1

0,1


 

 

Продолжение таблицы 2.3

 

Компания

Alcatel

Bellcore

Cambrian

Ciena

IBM

Lucent

MCI

Nortel

Osicom

Pirelli

Начало плана S

1531,90

н/д

н/д

н/д

н/д

н/д

1530,33

1528,77

н/д

н/д

Начало плана L

1547,72

1547,72

н/д

1545,32

н/д

1550,12

1549,32

н/д

н/д

1546,92

Конец плана L

1558,98

1558,98

н/д

1560,61

н/д

1560,61

1560,61

н/д

н/д

1558,98

Число каналов

8L;16S;32-40SL

8L

16; 32

16L; 40L

10

16L

4L; 8S

8S

8; 16

16L


 

 

Из табл. 2.3 видно, что компания Ciena, а в будущем, видимо, и другие компании, использующие шаг 0,05 ТГц (50 ГГц), выйдут за рамки стандартного плана, желая увеличить число каналов как в области наиболее плоской АВХ стандартного ОУ (Ciena), так и во всей области стандартизованного диапазона с выравненным усилением ОУ 1529-1565 нм. Однако этого не произошло, так как к моменту публикации проект стандарта был скорректирован и в окончательной версии (на 23.10.98), появилась таблица с канальным частотным планом, учитывающим и меньший шаг – 0,05 ТГц (50 ГГц, или 0,4нм).Ясно, что число каналов, которое можно разместить в указанном стандартном диапазоне, можно оценить по формуле Nh=Int[Dст/h], где функция Int означает операцию взятия целой части. Используя ее, получим следующую таблицу (в нижней строке указано число каналов Nh2, кратное 2n, которое может быть получено для данного шага):

Таблица 2.4 Оценка максимального числа каналов, реализуемых в полосе ОУ 5,1 ТГц

h [ТГц]

1

0,6

0,5

0,4

0,2

0,1

0,05

Nh

5

8

10

12

25

51

102

Nh2

4

8

8

8

16

32

64


 

 

Из этой таблицы видно, что схема канального плана с числом каналов, кратным 2n, которой придерживаются ряд производителей, нерациональна с точки зрения использования стандартизованной выравненной полосы ОУ. Во-12вторых, видно, что старый канальный план стандарта G.692 допускал формирование не более 51 канала. Этот показатель был перекрыт рядом компаний, производящих 96, 128 и 160 канальные системы.

 

2.3.3 Классификация WDM на основе канального плана

 

Схема расширенного канального плана позволяет предложить следующую схему классификации, учитывающую современные взгляды и тенденции выделять три типа мультиплексоров WDM:

  • обычные (грубые) WDM (CDWM) – ГМРДВ, или просто WDM – МРДВ,

  • плотные WDM (DWDM) – ПМРДВ,

  • высокоплотные WDM (HDWDM) – ВПМРДВ.

Хотя до сих пор и нет точных границ деления между этими типами, можно предложить, вслед за специалистами компании Alcatel, некоторые границы, основанные на исторической практике разработки систем WDM и указанном выше стандарте G.692 с его канальным планом, называемым также “волновым планом" или “частотным планом" в зависимости от того, используется ли волновая или частотная шкала канального плана. Итак, можно называть:

  • системами WDM – системы с частотным разносом каналов не менее 200 ГГц, позволяющие мультиплексировать не более 16 каналов,

  • системами DWDM – системы с разносом каналов не менее 100 ГГц, позволяющие мультиплексировать не более 64 каналов,

  • системами HDWDM – системы с разносом каналов 50 ГГц и менее, позволяющие мультиплексировать не менее 64 каналов.

 

2.4 Технологии  мультиплексирования

 

Хотя подробное обсуждение механизмов, лежащих в основе оптического мультиплексирования и демультиплексирования, выходит за рамки данной работы, в общих чертах описываютсянаиболее часто применяемые механизмы волнового разделения каналов.

 

2.4.1 Тонкопленочные  фильтры

 

Тонкопленочный фильтр состоит из нескольких слоев прозрачного диэлектрического материала с различными показателями преломления, нанесенных последовательно друг за другом на оптическую подложку.

На каждой границе раздела между слоями из-за различия их показателей преломления часть падающего светового пучка отражается обратно. Этот отраженный свет усиливает или подавляет падающий (отраженная волна интерферирует с падающей) в зависимости от длины волны. Надлежащим образом подобрав показатель преломления и толщину каждого слоя, можно получить фильтр, который будет пропускать любой заданный диапазон длин волн и отражать все остальные (рис. 2.5).

 

Рис. 2.5  I1 – падающая волна, I2 – отраженная, I3 – прошедшая

 

В мультиплексорах и демультиплексорах используются обычно одноступенчатые тонкопленочные фильтры, каждый из которых выделяет из составного сигнала (или добавляет в него) один канал. Фильтры расположены под наклоном к оптической оси, чтобы отраженный свет не попадал обратно в систему. Наклонное расположение фильтров изменяет эффективную толщину слоев и меняет таким образом полосу пропускания, что необходимо учитывать при проектировании фильтров. Для обработки многоволновых сигналов используют многоступенчатые системы фильтров, в которых свет, отраженный от каждого фильтра, попадает на вход следующего фильтра, что придает исключительную важность вопросу их выравнивания (рис. 2.6).

 

Рис. 2.6 Многоступенчатая система тонкопленочных фильтров для демультиплексирования составного сигнала

Тонкопленочные фильтры имеют достаточно узкую полосу пропускания и используются в системах WDM с 16-ю или 32-мя каналами. В современных системах с более плотным расположением каналов используют другие технологии.

 

2.4.2 Волоконные  брэгговские решетки

 

Волоконная брэгговская решетка – это, по сути, оптический интерферометр, встроенный в волокно. Волокно, легированное некоторыми веществами (обычно германием), может изменять свой показатель преломления под воздействием ультрафиолетового света. Если облучить такое волокно ультрафиолетовым излучением с определенной пространственной периодической структурой, то волокно превращается в своего рода дифракционную решетку. Другими словами, это волокно будет практически полностью отражать свет определенного, наперед заданного диапазона длин волн, и пропускать свет всех остальных длин волн.

 

Рис. 2.7  Волоконная брэгговская решетка выделяет из составного сигнала канал определенной длины волны

 

Если структура не вполне периодическая, и период модуляции ее показателя преломления изменяется монотонно (происходит чирпирование), то получается дифракционная решетка с линейно изменяющимся периодом. Такие решетки используются для компенсации хроматической дисперсии в волоконной линии связи или для коррекции чирпированного сигнала лазерного источника.

Центральная длина волны фильтра на основе регулярной волоконной брэгговской решетки определяется ее периодом, полоса пропускания обратно пропорциональна ее длине. Оба этих параметра зависят от температуры, поэтому такие фильтры должны быть помещены в термостат или другое устройство, контролирующее температуру.

Волоконная брэгговская решетка может использоваться как оптический фильтр в устройствах мультиплексирования и демультиплексирования, как компенсатор хроматической дисперсии, или в комбинации с циркуляторами в мультиплексорах ввода/вывода каналов (рис. 2.7).

 

 

Рис. 2.8 Использование волоконных брэгговских решеток в мультиплексорах ввода/вывода каналов

 

В мультиплексорах ввода/вывода каналов волоконная брэгговская решетка может использоваться вместе с двумя циркуляторами. редко используются в пассивных компонентах систем DWDM сами по себе. Со стороны порта вывода канала циркулятор выделяет отраженную волну и направляет ее в порт вывода (рис. 2.8, слева). Со стороны порта ввода циркулятор добавляет в передаваемый составной сигнал один канал на той же длине волны, что была выделена (рис. 2.8, справа). Такие устройства часто используются на границе между магистральным каналом и сетью городского или регионального масштаба. В магистральном канале обычно очень много длин волн, в то время как в городских или региональных сетях их намного меньше.

Волоконные брэгговские решетки в последнее время также стали использоваться в устройствах мультиплексирования и демультиплексирования вместе с интерферометрами типа Маха-Цендера и в комбинации с другими типами фильтров.

Наряду с мультиплексорами и демультиплексорами, рассмотренная технология узкополосной фильтрации оптических каналов также используется для выравнивания спектра сигнала перед усилителями EDFA, для стабилизации длины волны и в волновых стабилизаторах.

 

2.4.3 Дифракционные  решетки

 

Наиболее распространенные в оптике обычные дифракционные решетки отражают световой пучок под разными углами в плоскости падения, причем угол, в которых отраженный свет достигает максимальной интенсивности, зависит от длины волны.

В дифракционных решетках используется тот же физический принцип, что и в тонкопленочных фильтрах – подавление или усиление света за счет интерференции падающих и отраженных волн (рис. 2.9).

Информация о работе Способы защиты от вибрации и шума