Сущность ручной дуговой сварки

Автор работы: Пользователь скрыл имя, 20 Октября 2014 в 20:46, реферат

Краткое описание

Дуговая сварка классифицируется по следующим основным признакам: по виду электрода (плавящимся или неплавящимся электродом), по виду дуги (свободной или сжатой дугой), по характеру воздействия дуги на основной металл (дугой прямого или косвенного действия, трехфазной дугой). Плавящиеся электроды подразделяются на штучные, проволочные и ленточные

Вложенные файлы: 1 файл

Сущность ручной дуговой сварки.doc

— 353.00 Кб (Скачать файл)

Сущность ручной дуговой сварки

Дуговой сваркой называется сварка плавлением, при которой нагрев свариваемых кромок осуществляется теплотой электрической дуги.

Дуговая сварка классифицируется по следующим основным признакам: по виду электрода (плавящимся или неплавящимся электродом), по виду дуги (свободной или сжатой дугой), по характеру воздействия дуги на основной металл (дугой прямого или косвенного действия, трехфазной дугой). Плавящиеся электроды подразделяются на штучные, проволочные и ленточные. Они применяются как сплошного сечения, так и порошковые. Неплавящиеся электроды применяются: вольфрамовые, угольные и графитовые.

Дуговую сварку производят постоянным током прямой и обратной полярности, переменным током как промышленной, так и повышенной частот и пульсирующим током. При этом сварка может быть выполнена как одно-, двух- и многодуговая (с раздельным питанием каждой дуги), так и одно-, двух- и многоэлектродная (с общим подводом сварочного тока).

В промышленности и строительстве получили наибольшее применение следующие основные разновидности дуговой сварки.

Рис. 3.

Ручная дуговая сварка производится двумя способами: неплавящимся и плавящимся электродом. По первому способу (рис. 3, а) свариваемые кромки изделия 5 приводят в соприкосновение, между неплавящимся (угольным или графитовым) электродом 3 и изделием возбуждают электрическую дугу 4. Кромки изделия и вводимый в зону дуги присадочный материал 2 нагреваются до плавления и образуют ванну расплавленного металла, который после затвердевания превращается в сварной шов 1. Этот способ используется иногда при сварке цветных металлов и их сплавов, а также при наплавке твердых сплавов. Второй способ сварки (рис. 3, б), выполняемой плавящимся электродом, является основным при ручной дуговой сварке. Электрическая дуга 2 возбуждается между металлическим (плавящимся) электродом 1 и свариваемыми кромками изделия 4. Теплота дуги расплавляет электрод и кромки изделия. Получается общая ванна расплавленного металла, которая, охлаждаясь, образует сварной шов 3.

Техника сварки ручной дуговой сварки.

Дуга может возбуждаться двумя приёмами: касанием впритык и отводом перпендикулярно вверх или “чирканьем” электродом как спичкой. Второй способ удобнее. Но неприемлем в узких и неудобных местах.

В процессе сварки необходимо поддерживать определённую длину дуги, которая зависит от марки и диаметра электрода. Ориентировочно нормальная длина дуги должна быть в пределах Lд =( 0,5-1,1)dэ, где Lд - длина дуги, мм; dэ - диаметр электрода, мм.

Длина дуги оказывает существенное влияние на качество сварного шва и его геометрическую форму. Длинная дуга способствует более интенсивному окислению и азотированию расплавляемого металла, увеличивает разбрызгивание, а при сварке электродами основного типа приводит к пористости металла.

В процессе сварки электроду сообщается движение в трёх направлениях. Первое движение - поступательное, по направлению оси электрода. Этим движением поддерживается постоянная (в известных пределах ) длина дуги в зависимости от скорости плавления электрода.

Второе движение -перемещение электрода вдоль оси валика образования шва. Скорость этого движения устанавливается в зависимости от тока, диаметра электрода, скорости его плавления, вида шва и других факторов. При отсутствии поперечных движений электрода получается так называемый ниточный валик, на 2-3 мм больший диаметра электрода, или узкий шов шириной e=1,5dэ.

Третье движение - перемещение электрода поперёк шва для получения шва шире, чем ниточный валик, так называемого уширенного валика.

Поперечные колебательные движения конца электрода (рис. 5) определяются формой разделки, размерами и положением шва, свойствами свариваемого материала, навыком сварщика. Для широких швов, получаемых с поперечными колебаниями, e = ( 1 , 5 5 )dэ.

Для повышения работоспособности сварных конструкций, уменьшения внутренних напряжений и деформаций большое значение имеет порядок заполнения швов.

Под порядком заполнения швов понимается как порядок заполнения разделки шва по поперечному сечению, так и последовательность сварки по длине шва.

По протяжённости все швы условно можно разделить на три группы: короткие - до 300 мм, средние-300-1000, длинные - свыше 1000 мм.

В зависимости от протяженности шва, материала, требований к точности и качеству сварных соединений сварка таких швов может выполняться различно рис 6:

Короткие швы выполняют на проход - от начала шва до его конца. Швы средней длины варят от середины к концам или обратно ступенчатым методом. Швы большой длины выполняют двумя способами: от середины к краям (обратноступенчатым способом) и вразброс.

При обратноступенчатом методе весь шов разбивается на небольшие участки длиной по150-200 мм, на каждом участке сварку ведут в направлении, обратном общему направлению сварки. Длина участков обычно равна от 100 до 350 мм. В зависимости от количества проходов (слоёв), необходимых для выполнения проектного сечения шва, различают однопроходный (однослойный) и многопроходный (многослойный) швы.

С точки зрения производительности наиболее целесообразными являются однопроходные швы, которые обычно применяются при сварке металла небольших толщин (до 8-10 мм.) с предварительной разделкой кромок.

Сварку соединений ответственных конструкций большой толщины (свыше 20-25 мм.), когда появляются объёмные напряжения и возрастает опасность образования трещин, выполняют с применением специальных приёмов заполнения швов “горкой” или “каскадным” методом.

При сварке “горкой” сначала в разделку кромок наплавляют первый слой небольшой длины 200-300 мм, затем второй слой, перекрывающий первый и имеющий в 2 раза большую длину. Третий слой перекрывает второй и длиннее его на 200-300 мм. Так наплавляют слои до тех пор, пока на небольшом участке над первым слоем разделка не будет заполнена. Затем от этой “горки” сварку ведут в разные стороны короткими швами тем же способом. Таким образом, зона сварки всё время находится в горячем состоянии, что позволяет предупредить появление трещин. “Каскадный” метод является разновидностью горки.

Соединения под сварку собирают в приспособлениях, чаще всего с прихватками. Сечение прихваточного шва составляет примерно 1/3 от сечения основного шва, длина его 30-50 мм. Угловые швы сваривают “в угол” или “в лодочку”(рис.7).

При сварке “в угол” проще сборка, допускается большой зазор между свариваемыми деталями (до 3 мм), но сложнее техника сварки, возможны дефекты типа подрезов и наплывов, меньше производительность, так как приходится за один проход сваривать швы небольшого сечения (катет < 8 мм) и применять многослойную сварку. Сварка “в лодочку более производительна, допускает большие катеты шва за один проход, но требует более тщательной сборки.

Обеспечение нормативных требований по технологии и технике сварки - основное условие получения качественных сварных швов. Отклонения размеров и формы сварного шва от проектных чаще всего наблюдаются в угловых швах и связаны с нарушением режимов сварки, неправильной подготовкой кромок под сварку, неравномерной скоростью сварки, а также с несвоевременным контрольным обмером шва.

Непроваром называют местное отсутствие сплавления между свариваемыми элементами, между металлом шва и основным металлом или отдельными слоями шва при многослойной сварке. Непровар уменьшает сечение шва и вызывает концентрацию напряжений, поэтому может значительно снизить прочность конструкции. Участки шва, где выявлены непровары, величина которых превосходит допустимую, подлежат удалению и последующей заварке.

Непровар в корне шва в основном вызывается недостаточной силой тока или повышенной скоростью сварки, непровар кромки (несплавление кромки)- смещением электрода с оси стыка, а также блужданием дуги, непровар между слоями - плохой очисткой предыдущих слоёв, большим объёмом наплавляемого металла, натеканием расплавленного металла перед дугой.

Подрезом называют местное уменьшение толщины основного металла у границы шва. Подрез приводит к уменьшению сечения металла и резкой концентрации напряжений в тех случаях, когда он расположен перпендикулярно действующим рабочим напряжениям.

Наплывом называют натекание металла шва поверхность основного металла без сплавления с ним.

Прожогом называют полость в шве, образовавшуюся в результате вытекания сварочной ванны, является недопустимым дефектом сварного соединения.

Кратером называют незаваренное углубление, образующееся после обрыва дуги в конце шва. В кратере, как правило, образуются усадочные рыхлости, часто переходящие в трещины.

Ожогами называют небольшие участки подвергшегося расплавлению металла на основном металле вне сварного шва.

Подрезы, натёки, наплывы, прожоги, незаваренные кратеры, оставшиеся после сварки шлак и брызги, оплавление кромок (в угловых швах) вызываются преимущественно чрезмерной силой тока и напряжения на дуге, большим диаметром электродов, неправильными манипуляциями электродом, плохой сборкой под сварку низкой квалификацией или небрежностью сварщика.

 

 

Рис. 4.

Автоматическая сварка под флюсом (рис. 4) — это дуговая сварка, в которой механизированы основные движения (на рис. показаны стрелками), выполняемые сварщиком при ручной сварке —: подача электрода 1 в зону дуги 2 и перемещение его вдоль свариваемых кромок изделия 7. При полуавтоматической сварке механизирована подача электрода в зону дуги, а перемещение электрода вдоль свариваемых кромок производится сварщиком вручную. Жидкий металл сварочной ванны 5 защищают от воздействия кислорода и азота воздуха расплавленным шлаком 4, образованным от плавления флюса 3, подаваемого в зону дуги. После затвердевания металла сварочной ванны образуется сварной шов 6. Хорошее качество швов и высокая производительность обеспечили автоматической и полуавтоматической сварке под флюсом широкое применение.

Рис. 5.

Дуговая сварка в защитном газе выполняется неплавящимся (вольфрамовым) (рис. 5, а) или плавящимся (рис. 5, б) электродом 3. В первом случае сварной шов формируется за счет металла расплавляемых кромок изделия. При необходимости в зону дуги подается присадочный металл 4. Во втором случае подаваемая в зону дуги электродная проволока 3 расплавляется и участвует в образовании сварного шва 1. Расплавленный металл защищают от окисления и азотирования струей защитного газа 2, оттесняющей атмосферный воздух из зоны дуги. 

Сущность электронно-лучевого воздействия заключается в преобразовании кинетической энергии направленного пучка электронов в зоне обработки в тепловую. Электронно-лучевая сварка (далее - ЭЛС) осуществляется расплавлением кромок основного металла остросфокусированным потоком электронов, ускоренных электрическим полем с разностью потенциалов ≥ 1 0 ... 100 кB. В результате электронный луч в зоне обработки обеспечивает высокую плотность мощности. По этому показателю электронный луч существенно превосходит традиционные сварочные источники нагрева (электродуговые) и уступает только лазерному (табл. 1.). Металл шва так же, как и при других методах сварки плавлением, имеет литую структуру.

Электроны, обладающие достаточно высокой энергией, могут проникать в обрабатываемый материал на некоторую глубину. Максимальная глубина, пройдя которую электрон теряет свою энергию, зависит от ускоряющего напряжения и плотности обрабатываемого материала и может быть выражена зависимостью δ = 2,35 • 10-12U2/ ρ, гдe δ - глубина проникновения, cм; U - ускоряющее напряжение, B ; ρ - плотность обрабатываемого материала, г/см3. Так, для стали с плотностью 7,8 г/см3 при U = 60 кВ δ ≈ 12 мкм. Следовательно, энергия электронного луча преобразуется в тепловую внутри тонкого поверхностного слоя. Взаимодействие электронного луча с обрабатываемым материалом вызывает ряд явлений, влияющих на технологию сварки и конструкцию сварочных установок. Тепловое и рентгеновское излучения, отраженныe, вторичные и тепловые электроны незначительнo снижают эффективно используемую дoлю энергии электронного луча для нагревa и плавления свариваемого металла. Значения эффективного КПД при электронно-лучевой сварке порядка 0,85...0,95. Таким образом, электронный луч пo сравнению c другими сварочными источниками энергии, используeмыми для сварки плавлением, сaмый высокоэффективный.

При воздействии пучка электронов сравнительно невысокой плотности мощности (до 1 • 105 Вт/см2) процесс электронно-лучевая сварки подобен процессу обычной электродуговой сварки. Проплавление существенно ограничено по глубине и в поперечном сечении близко по форме к полусфере. Такой процесс при меняется для сварки малых толщин (дo 3 мм).

Таблица 1. Плотность мощности в пятне нагрева сварочных источников теплоты.

Источник нагрева

Минимальная площадь пятна нагрева, см2

Максимальная плотность мощности в пятне нагрева, Вт/см2

Ацетилено-кислородное пламя

0,2

1 • 104

Электрическая дуга

0,1

1 • 105

Электронный луч

1 • 10-5

1 • 108

Лазерный луч

<1 • 10-7

>1 • 108


Переход от сварки малых толщин к однопроходнoй сварке металлов больших толщин осуществляетcя пpи условии достижeния критической плотности мощности q*2, величинa которой для большинствa металлов q*2 = 105 ... 106 Вт/см2. В этом случае эффективная мощность электронного луча уже не может быть отведена вглубь металла путем теплопроводности и тепловое равновесие поверхности нагрева наступает при испарении части металла.

Информация о работе Сущность ручной дуговой сварки